TPTP Problem File: REL040-10.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : REL040-10 : TPTP v9.0.0. Released v7.5.0.
% Domain : Puzzles
% Problem : Partial functions distribute over meet under sequential comp'n
% Version : Especial.
% English :
% Refs : [CS18] Claessen & Smallbone (2018), Efficient Encodings of Fi
% : [Sma18] Smallbone (2018), Email to Geoff Sutcliffe
% Source : [Sma18]
% Names :
% Status : Unsatisfiable
% Rating : 0.91 v8.2.0, 0.92 v8.1.0, 0.95 v7.5.0
% Syntax : Number of clauses : 18 ( 18 unt; 0 nHn; 2 RR)
% Number of literals : 18 ( 18 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 7 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 12 ( 12 usr; 6 con; 0-2 aty)
% Number of variables : 34 ( 0 sgn)
% SPC : CNF_UNS_RFO_PEQ_UEQ
% Comments : Converted from REL040-4 to UEQ using [CS18].
%------------------------------------------------------------------------------
cnf(maddux1_join_commutativity_1,axiom,
join(A,B) = join(B,A) ).
cnf(maddux2_join_associativity_2,axiom,
join(A,join(B,C)) = join(join(A,B),C) ).
cnf(maddux3_a_kind_of_de_Morgan_3,axiom,
A = join(complement(join(complement(A),complement(B))),complement(join(complement(A),B))) ).
cnf(maddux4_definiton_of_meet_4,axiom,
meet(A,B) = complement(join(complement(A),complement(B))) ).
cnf(composition_associativity_5,axiom,
composition(A,composition(B,C)) = composition(composition(A,B),C) ).
cnf(composition_identity_6,axiom,
composition(A,one) = A ).
cnf(composition_distributivity_7,axiom,
composition(join(A,B),C) = join(composition(A,C),composition(B,C)) ).
cnf(converse_idempotence_8,axiom,
converse(converse(A)) = A ).
cnf(converse_additivity_9,axiom,
converse(join(A,B)) = join(converse(A),converse(B)) ).
cnf(converse_multiplicativity_10,axiom,
converse(composition(A,B)) = composition(converse(B),converse(A)) ).
cnf(converse_cancellativity_11,axiom,
join(composition(converse(A),complement(composition(A,B))),complement(B)) = complement(B) ).
cnf(def_top_12,axiom,
top = join(A,complement(A)) ).
cnf(def_zero_13,axiom,
zero = meet(A,complement(A)) ).
cnf(dedekind_law_14,axiom,
join(meet(composition(A,B),C),composition(meet(A,composition(C,converse(B))),meet(B,composition(converse(A),C)))) = composition(meet(A,composition(C,converse(B))),meet(B,composition(converse(A),C))) ).
cnf(modular_law_1_15,axiom,
join(meet(composition(A,B),C),meet(composition(A,meet(B,composition(converse(A),C))),C)) = meet(composition(A,meet(B,composition(converse(A),C))),C) ).
cnf(modular_law_2_16,axiom,
join(meet(composition(A,B),C),meet(composition(meet(A,composition(C,converse(B))),B),C)) = meet(composition(meet(A,composition(C,converse(B))),B),C) ).
cnf(goals_17,negated_conjecture,
join(composition(converse(sk1),sk1),one) = one ).
cnf(goals_18,negated_conjecture,
tuple(join(meet(composition(sk1,sk2),composition(sk1,sk3)),composition(sk1,meet(sk2,sk3))),join(composition(sk1,meet(sk2,sk3)),meet(composition(sk1,sk2),composition(sk1,sk3)))) != tuple(composition(sk1,meet(sk2,sk3)),meet(composition(sk1,sk2),composition(sk1,sk3))) ).
%------------------------------------------------------------------------------