TPTP Problem File: REL033+2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : REL033+2 : TPTP v9.0.0. Released v4.0.0.
% Domain : Relation Algebra
% Problem : Sequential composition distributes in each argument of meet
% Version : [Mad95] (equational) axioms.
% English : If x is a vector then sequential composition distributes over meet.
% Refs : [Mad95] Maddux (1995), Relation-Algebraic Semantics
% : [Hoe08] Hoefner (2008), Email to G. Sutcliffe
% Source : [Hoe08]
% Names :
% Status : Theorem
% Rating : 0.71 v9.0.0, 0.80 v8.2.0, 0.83 v7.5.0, 0.86 v7.4.0, 0.82 v7.3.0, 0.77 v7.2.0, 0.83 v7.1.0, 0.82 v7.0.0, 0.87 v6.4.0, 0.86 v6.3.0, 0.93 v6.2.0, 0.91 v6.1.0, 0.92 v5.5.0, 0.88 v5.4.0, 0.89 v5.3.0, 0.83 v5.2.0, 0.86 v5.0.0, 0.88 v4.1.0, 0.91 v4.0.1, 0.90 v4.0.0
% Syntax : Number of formulae : 14 ( 13 unt; 0 def)
% Number of atoms : 16 ( 16 equ)
% Maximal formula atoms : 3 ( 1 avg)
% Number of connectives : 2 ( 0 ~; 0 |; 1 &)
% ( 0 <=>; 1 =>; 0 <=; 0 <~>)
% Maximal formula depth : 6 ( 3 avg)
% Maximal term depth : 5 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 8 ( 8 usr; 3 con; 0-2 aty)
% Number of variables : 28 ( 28 !; 0 ?)
% SPC : FOF_THM_RFO_PEQ
% Comments : Proof goal is split into 2 inequations (encoded again as
% equations).
%------------------------------------------------------------------------------
%---Include axioms for relation algebra
include('Axioms/REL001+0.ax').
%------------------------------------------------------------------------------
fof(goals,conjecture,
! [X0,X1,X2] :
( composition(X0,top) = X0
=> ( join(composition(meet(X0,X1),X2),meet(X0,composition(X1,X2))) = meet(X0,composition(X1,X2))
& join(meet(X0,composition(X1,X2)),composition(meet(X0,X1),X2)) = composition(meet(X0,X1),X2) ) ) ).
%------------------------------------------------------------------------------