TPTP Problem File: REL031-1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : REL031-1 : TPTP v9.0.0. Released v4.0.0.
% Domain : Relation Algebra
% Problem : Partial functions are closed under composition
% Version : [Mad95] (equational) axioms.
% English : If x and y are partial functions then x;y is also a partial
% functions.
% Refs : [Mad95] Maddux (1995), Relation-Algebraic Semantics
% : [Hoe08] Hoefner (2008), Email to G. Sutcliffe
% Source : [Hoe08]
% Names :
% Status : Unsatisfiable
% Rating : 0.50 v8.2.0, 0.58 v8.1.0, 0.60 v7.5.0, 0.50 v7.4.0, 0.61 v7.3.0, 0.58 v7.1.0, 0.56 v7.0.0, 0.53 v6.4.0, 0.58 v6.3.0, 0.65 v6.2.0, 0.64 v6.1.0, 0.69 v6.0.0, 0.81 v5.5.0, 0.79 v5.4.0, 0.67 v5.2.0, 0.64 v5.1.0, 0.67 v5.0.0, 0.64 v4.1.0, 0.45 v4.0.1, 0.57 v4.0.0
% Syntax : Number of clauses : 16 ( 16 unt; 0 nHn; 3 RR)
% Number of literals : 16 ( 16 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 5 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 10 ( 10 usr; 5 con; 0-2 aty)
% Number of variables : 25 ( 0 sgn)
% SPC : CNF_UNS_RFO_PEQ_UEQ
% Comments : tptp2X -f tptp:short -t cnf:otter REL031+1.p
%------------------------------------------------------------------------------
%----Include axioms of relation algebra
include('Axioms/REL001-0.ax').
%------------------------------------------------------------------------------
cnf(goals_14,negated_conjecture,
join(composition(converse(sk1),sk1),one) = one ).
cnf(goals_15,negated_conjecture,
join(composition(converse(sk2),sk2),one) = one ).
cnf(goals_16,negated_conjecture,
join(composition(converse(composition(sk1,sk2)),composition(sk1,sk2)),one) != one ).
%------------------------------------------------------------------------------