## TPTP Problem File: RAL040^1.p

View Solutions - Solve Problem

```%------------------------------------------------------------------------------
% File     : RAL040^1 : TPTP v7.5.0. Released v7.0.0.
% Domain   : Real Algebra
% Problem  : International Mathematical Olympiad, 2004, Problem 2
% Version  : [Mat16] axioms : Especial.
% English  : Find all polynomials f with real coeffcients such that for all
%            reals a,b,c such that ab + bc + ca = 0 we have the following
%            relations f (a - b) + f (b - c) + f (c - a) = 2f (a + b + c).

% Refs     : [Mat16] Matsuzaki (2016), Email to Geoff Sutcliffe
%          : [MI+16] Matsuzaki et al. (2016), Race against the Teens - Benc
% Source   : [Mat16]
% Names    : IMO-2004-2.p [Mat16]

% Status   : Theorem
% Rating   : ? v7.0.0
% Syntax   : Number of formulae    : 3485 (   0 unit;1199 type;   0 defn)
%            Number of atoms       : 45340 (2211 equality;22720 variable)
%            Maximal formula depth :   35 (   9 average)
%            Number of connectives : 39632 ( 104   ~; 233   |;1173   &;35995   @)
%                                         (1095 <=>;1032  =>;   0  <=;   0 <~>)
%                                         (   0  ~|;   0  ~&)
%            Number of type conns  : 2408 (2408   >;   0   *;   0   +;   0  <<)
%            Number of symbols     : 1246 (1199   :;   0   =;   0  @=)
%                                         (   0  !!;   0  ??;   0 @@+;   0 @@-)
%            Number of variables   : 8060 (  66 sgn;7088   !; 430   ?; 406   ^)
%                                         (8060   :; 136  !>;   0  ?*)
%                                         (   0  @-;   0  @+)
%            Arithmetic symbols    : 1977 (   6 prd;   9 fun;  23 num;1939 var)
% SPC      : TH1_THM_EQU_ARI

% Comments : Theory: RCF+PA; Score: 7; Author: Jumma Kudo;
%            Generated: 2014-10-31
%            ^ [V_P_dot_0: 'R2R'] :
%            ? [V_a_dot_0: \$real,V_b_dot_0: \$real] :
%              ( V_P_dot_0
%              = ( 'poly-fun/1' @ ( 'cons/2' @ \$real @ V_a_dot_0 @ ( 'cons/2' @ \$real @ 0.0 @ ( 'cons/2' @ \$real @ V_b_dot_0 @ ( 'nil/0' @ \$real ) ) ) ) ) ) )
%------------------------------------------------------------------------------
include('Axioms/MAT001^0.ax').
%------------------------------------------------------------------------------
thf(p_qustion,conjecture,
( 'find/1' @ 'R2R'
@ ^ [V_P: 'R2R'] :
( ? [V_as: ( 'ListOf' @ \$real )] :
( V_P
= ( 'poly-fun/1' @ V_as ) )
& ! [V_a: \$real,V_b: \$real,V_c: \$real] :
( ( ( \$sum @ ( \$product @ V_a @ V_b ) @ ( \$sum @ ( \$product @ V_b @ V_c ) @ ( \$product @ V_c @ V_a ) ) )
= 0.0 )
=> ( ( \$sum @ ( 'funapp/2' @ V_P @ ( \$difference @ V_a @ V_b ) ) @ ( \$sum @ ( 'funapp/2' @ V_P @ ( \$difference @ V_b @ V_c ) ) @ ( 'funapp/2' @ V_P @ ( \$difference @ V_c @ V_a ) ) ) )
= ( \$product @ 2.0 @ ( 'funapp/2' @ V_P @ ( \$sum @ V_a @ ( \$sum @ V_b @ V_c ) ) ) ) ) ) ) )).

%------------------------------------------------------------------------------
```