## TPTP Problem File: RAL015^1.p

View Solutions - Solve Problem

```%------------------------------------------------------------------------------
% File     : RAL015^1 : TPTP v7.5.0. Released v7.0.0.
% Domain   : Real Algebra (Number sequences)
% Problem  : Chart System Math II+B Yellow Book, Problem 08CYBE146
% Version  : [Mat16] axioms : Especial.
% English  :

% Refs     : [Mat16] Matsuzaki (2016), Email to Geoff Sutcliffe
%          : [MI+16] Matsuzaki et al. (2016), Race against the Teens - Benc
% Source   : [Mat16]
% Names    : Chart-2B-Yellow-08CYBE146.p [Mat16]

% Status   : Theorem
% Rating   : ? v7.0.0
% Syntax   : Number of formulae    : 3485 (   0 unit;1199 type;   0 defn)
%            Number of atoms       : 45312 (2210 equality;22703 variable)
%            Maximal formula depth :   35 (   9 average)
%            Number of connectives : 39605 ( 104   ~; 233   |;1174   &;35968   @)
%                                         (1095 <=>;1031  =>;   0  <=;   0 <~>)
%                                         (   0  ~|;   0  ~&)
%            Number of type conns  : 2408 (2408   >;   0   *;   0   +;   0  <<)
%            Number of symbols     : 1247 (1199   :;   0   =;   0  @=)
%                                         (   0  !!;   0  ??;   0 @@+;   0 @@-)
%            Number of variables   : 8057 (  66 sgn;7085   !; 429   ?; 407   ^)
%                                         (8057   :; 136  !>;   0  ?*)
%                                         (   0  @-;   0  @+)
%            Arithmetic symbols    : 1977 (   6 prd;   9 fun;  24 num;1938 var)
% SPC      : TH1_THM_EQU_ARI

% Comments : Theory: PA; Level: 2; Author: Takuya Matsuzaki;
%            Generated: 2014-12-30
%            ^ [V_S: \$int] : ( V_S = 15 ) )
%------------------------------------------------------------------------------
include('Axioms/MAT001^0.ax').
%------------------------------------------------------------------------------
thf(p1_qustion,conjecture,
( 'find/1' @ \$int
@ ( ^ [V_C: \$int] :
( V_C
= ( 'int.cardinality-of/1'
@ ( 'set-by-def/1' @ \$int
@ ( ^ [V_n: \$int] :
( ( \$lesseq @ 10 @ V_n )
& ( \$lesseq @ V_n @ 99 )
& ( ( \$remainder_f @ V_n @ 6 )
= 2 ) ) ) ) ) ) ) )).
%------------------------------------------------------------------------------
```