TPTP Problem File: RAL010^1.p

View Solutions - Solve Problem

%------------------------------------------------------------------------------
% File     : RAL010^1 : TPTP v7.5.0. Released v7.0.0.
% Domain   : Real Algebra (Numbers and algebraic expressions)
% Problem  : Chart System Math I+A Yellow Book, Problem 07CY1E060
% Version  : [Mat16] axioms : Especial.
% English  : 

% Refs     : [Mat16] Matsuzaki (2016), Email to Geoff Sutcliffe
%          : [MI+16] Matsuzaki et al. (2016), Race against the Teens - Benc
% Source   : [Mat16]
% Names    : Chart-1A-Yellow-07CY1E060.p [Mat16]

% Status   : Theorem
% Rating   : ? v7.0.0
% Syntax   : Number of formulae    : 3485 (   0 unit;1199 type;   0 defn)
%            Number of atoms       : 45309 (2209 equality;22703 variable)
%            Maximal formula depth :   35 (   9 average)
%            Number of connectives : 39604 ( 104   ~; 233   |;1173   &;35968   @)
%                                         (1095 <=>;1031  =>;   0  <=;   0 <~>)
%                                         (   0  ~|;   0  ~&)
%            Number of type conns  : 2408 (2408   >;   0   *;   0   +;   0  <<)
%            Number of symbols     : 1246 (1199   :;   0   =;   0  @=)
%                                         (   0  !!;   0  ??;   0 @@+;   0 @@-)
%            Number of variables   : 8056 (  66 sgn;7085   !; 429   ?; 406   ^)
%                                         (8056   :; 136  !>;   0  ?*)
%                                         (   0  @-;   0  @+)
%            Arithmetic symbols    : 1975 (   6 prd;   9 fun;  23 num;1937 var)
% SPC      : TH1_THM_EQU_ARI

% Comments : Theory: PA; Level: 2; Author: Munehiro Kobayashi;
%            Generated: 2015-01-08
%          : Answer
%            ^ [V_x_dot_0: $int] : ( V_x_dot_0 = 3 ) )
%------------------------------------------------------------------------------
include('Axioms/MAT001^0.ax').
%------------------------------------------------------------------------------
thf(p_qustion,conjecture,
    ( 'find/1' @ $int
    @ ^ [V_x: $int] :
        ( ( 'int.is-natural-number/1' @ V_x )
        & ( ( 'int.^/2' @ V_x @ 2 )
          = ( $sum @ ( $sum @ V_x @ 1 ) @ ( $sum @ V_x @ 2 ) ) ) ) )).

%------------------------------------------------------------------------------