TPTP Problem File: PUZ149^13.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : PUZ149^13 : TPTP v9.0.0. Released v8.1.0.
% Domain : Puzzles
% Problem : The bungling chemist
% Version : [BP13] axioms.
% English : Assume that a chemical compound c is made by pouring the elements
% a and b into the same beaker. The two elements a and b are not
% acid. It is possible that after making the compound c it results
% in an acid. Then it is possible that pouring element a results
% not in an acid, and pouring a and b in the beaker results in an
% acid.
% Refs : [Bal98] Baldoni (1998), Normal Multimodal Logics: Automatic De
% : [RO12] Raths & Otten (2012), The QMLTP Problem Library for Fi
% : [BP13] Benzmueller & Paulson (2013), Quantified Multimodal Lo
% : [Ste22] Steen (2022), An Extensible Logic Embedding Tool for L
% Source : [TPTP]
% Names : MML006+1 [QMLTP]
% Status : Theorem
% Rating : 0.25 v9.0.0, 0.20 v8.2.0, 0.31 v8.1.0
% Syntax : Number of formulae : 31 ( 8 unt; 16 typ; 8 def)
% Number of atoms : 65 ( 8 equ; 0 cnn)
% Maximal formula atoms : 9 ( 4 avg)
% Number of connectives : 82 ( 1 ~; 1 |; 2 &; 75 @)
% ( 1 <=>; 2 =>; 0 <=; 0 <~>)
% Maximal formula depth : 7 ( 3 avg)
% Number of types : 3 ( 2 usr)
% Number of type conns : 49 ( 49 >; 0 *; 0 +; 0 <<)
% Number of symbols : 15 ( 14 usr; 4 con; 0-3 aty)
% Number of variables : 23 ( 21 ^; 1 !; 1 ?; 23 :)
% SPC : TH0_THM_EQU_NAR
% Comments : This output was generated by embedproblem, version 1.7.1 (library
% version 1.3). Generated on Thu Apr 28 13:18:18 EDT 2022 using
% 'modal' embedding, version 1.5.2. Logic specification used:
% $modal == [$constants == $rigid,$quantification == $cumulative,
% $modalities == $modal_system_K].
%------------------------------------------------------------------------------
thf(mworld,type,
mworld: $tType ).
thf(mindex,type,
mindex: $tType ).
thf(mrel_type,type,
mrel: mindex > mworld > mworld > $o ).
thf('#pour_b_type',type,
'#pour_b': mindex ).
thf('#make_c_type',type,
'#make_c': mindex ).
thf('#pour_a_type',type,
'#pour_a': mindex ).
thf(mactual_type,type,
mactual: mworld ).
thf(mlocal_type,type,
mlocal: ( mworld > $o ) > $o ).
thf(mlocal_def,definition,
( mlocal
= ( ^ [Phi: mworld > $o] : ( Phi @ mactual ) ) ) ).
thf(mnot_type,type,
mnot: ( mworld > $o ) > mworld > $o ).
thf(mand_type,type,
mand: ( mworld > $o ) > ( mworld > $o ) > mworld > $o ).
thf(mor_type,type,
mor: ( mworld > $o ) > ( mworld > $o ) > mworld > $o ).
thf(mimplies_type,type,
mimplies: ( mworld > $o ) > ( mworld > $o ) > mworld > $o ).
thf(mequiv_type,type,
mequiv: ( mworld > $o ) > ( mworld > $o ) > mworld > $o ).
thf(mnot_def,definition,
( mnot
= ( ^ [A: mworld > $o,W: mworld] :
~ ( A @ W ) ) ) ).
thf(mand_def,definition,
( mand
= ( ^ [A: mworld > $o,B: mworld > $o,W: mworld] :
( ( A @ W )
& ( B @ W ) ) ) ) ).
thf(mor_def,definition,
( mor
= ( ^ [A: mworld > $o,B: mworld > $o,W: mworld] :
( ( A @ W )
| ( B @ W ) ) ) ) ).
thf(mimplies_def,definition,
( mimplies
= ( ^ [A: mworld > $o,B: mworld > $o,W: mworld] :
( ( A @ W )
=> ( B @ W ) ) ) ) ).
thf(mequiv_def,definition,
( mequiv
= ( ^ [A: mworld > $o,B: mworld > $o,W: mworld] :
( ( A @ W )
<=> ( B @ W ) ) ) ) ).
thf(mbox_type,type,
mbox: mindex > ( mworld > $o ) > mworld > $o ).
thf(mbox_def,definition,
( mbox
= ( ^ [R: mindex,Phi: mworld > $o,W: mworld] :
! [V: mworld] :
( ( mrel @ R @ W @ V )
=> ( Phi @ V ) ) ) ) ).
thf(mdia_type,type,
mdia: mindex > ( mworld > $o ) > mworld > $o ).
thf(mdia_def,definition,
( mdia
= ( ^ [R: mindex,Phi: mworld > $o,W: mworld] :
? [V: mworld] :
( ( mrel @ R @ W @ V )
& ( Phi @ V ) ) ) ) ).
thf(acid_decl,type,
acid: mworld > $o ).
thf(pour_ab_make_axiom_1,axiom,
mlocal @ ( mimplies @ ( mbox @ '#pour_a' @ ( mbox @ '#pour_b' @ acid ) ) @ ( mbox @ '#make_c' @ acid ) ) ).
thf(pour_ab_make_axiom_2,axiom,
mlocal @ ( mimplies @ ( mbox @ '#pour_a' @ ( mbox @ '#pour_b' @ ( mnot @ acid ) ) ) @ ( mbox @ '#make_c' @ ( mnot @ acid ) ) ) ).
thf(pour_ba_make_axiom_1,axiom,
mlocal @ ( mimplies @ ( mbox @ '#pour_b' @ ( mbox @ '#pour_a' @ acid ) ) @ ( mbox @ '#make_c' @ acid ) ) ).
thf(pour_ba_make_axiom_2,axiom,
mlocal @ ( mimplies @ ( mbox @ '#pour_b' @ ( mbox @ '#pour_a' @ ( mnot @ acid ) ) ) @ ( mbox @ '#make_c' @ ( mnot @ acid ) ) ) ).
thf(pour_a_acid,axiom,
mlocal @ ( mbox @ '#pour_a' @ ( mnot @ acid ) ) ).
thf(make_c_acid,axiom,
mlocal @ ( mdia @ '#make_c' @ acid ) ).
thf(conj,conjecture,
mlocal @ ( mand @ ( mdia @ '#pour_a' @ ( mnot @ acid ) ) @ ( mdia @ '#pour_a' @ ( mdia @ '#pour_b' @ acid ) ) ) ).
%------------------------------------------------------------------------------