TPTP Problem File: PUZ093^5.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : PUZ093^5 : TPTP v9.0.0. Released v4.0.0.
% Domain : Puzzles
% Problem : TPS problem from BASIC-HO-EQ-THMS
% Version : Especial.
% English :
% Refs : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source : [Bro09]
% Names : tps_1207 [Bro09]
% Status : Theorem
% Rating : 0.00 v7.4.0, 0.22 v7.2.0, 0.12 v7.0.0, 0.14 v6.4.0, 0.17 v6.3.0, 0.20 v6.2.0, 0.00 v6.1.0, 0.14 v5.5.0, 0.17 v5.4.0, 0.20 v5.3.0, 0.40 v5.2.0, 0.20 v4.1.0, 0.00 v4.0.1, 0.33 v4.0.0
% Syntax : Number of formulae : 1 ( 0 unt; 0 typ; 0 def)
% Number of atoms : 32 ( 32 equ; 0 cnn)
% Maximal formula atoms : 32 ( 32 avg)
% Number of connectives : 107 ( 12 ~; 5 |; 19 &; 64 @)
% ( 0 <=>; 7 =>; 0 <=; 0 <~>)
% Maximal formula depth : 25 ( 25 avg)
% Number of types : 1 ( 0 usr)
% Number of type conns : 1 ( 1 >; 0 *; 0 +; 0 <<)
% Number of symbols : 1 ( 0 usr; 0 con; 2-2 aty)
% Number of variables : 13 ( 0 ^; 1 !; 12 ?; 13 :)
% SPC : TH0_THM_EQU_NAR
% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
% project in the Department of Mathematical Sciences at Carnegie
% Mellon University. Distributed under the Creative Commons copyleft
% license: http://creativecommons.org/licenses/by-sa/3.0/
%------------------------------------------------------------------------------
thf(cSIXFRIENDS_PTH,conjecture,
? [Xa: $i,Xaa: $i,Xb: $i,Xbb: $i,Xc: $i,Xcc: $i,Xd: $i,Xdd: $i,Xe: $i,Xee: $i,Xh: $i,Xhh: $i] :
! [P: $i > $i] :
( ( ( ( ( ( P @ Xa )
= ( P @ Xaa ) )
& ( ( P @ Xb )
= ( P @ Xbb ) )
& ( ( P @ Xe )
= ( P @ Xhh ) ) )
=> ( ( P @ Xc )
= ( P @ Xdd ) ) )
& ( ( ( ( P @ Xa )
= ( P @ Xaa ) )
& ( ( P @ Xh )
= ( P @ Xhh ) )
& ( ( P @ Xb )
= ( P @ Xcc ) ) )
=> ( ( P @ Xd )
!= ( P @ Xee ) ) )
& ( ( ( ( P @ Xc )
= ( P @ Xcc ) )
& ( ( P @ Xcc )
= ( P @ Xd ) )
& ( ( P @ Xd )
= ( P @ Xdd ) )
& ( ( P @ Xa )
!= ( P @ Xbb ) ) )
=> ( ( P @ Xe )
!= ( P @ Xhh ) ) )
& ( ( ( ( P @ Xa )
= ( P @ Xaa ) )
& ( ( P @ Xd )
= ( P @ Xdd ) )
& ( ( P @ Xb )
!= ( P @ Xcc ) ) )
=> ( ( P @ Xe )
= ( P @ Xhh ) ) )
& ( ( ( ( P @ Xe )
= ( P @ Xee ) )
& ( ( P @ Xh )
= ( P @ Xhh ) )
& ( ( P @ Xc )
= ( P @ Xdd ) ) )
=> ( ( P @ Xa )
!= ( P @ Xbb ) ) )
& ( ( ( ( P @ Xb )
= ( P @ Xbb ) )
& ( ( P @ Xbb )
= ( P @ Xc ) )
& ( ( P @ Xc )
= ( P @ Xcc ) )
& ( ( P @ Xe )
!= ( P @ Xhh ) ) )
=> ( ( P @ Xd )
= ( P @ Xee ) ) ) )
=> ( ( ( P @ Xa )
!= ( P @ Xaa ) )
| ( ( P @ Xb )
!= ( P @ Xbb ) )
| ( ( P @ Xc )
!= ( P @ Xcc ) )
| ( ( P @ Xd )
!= ( P @ Xdd ) )
| ( ( P @ Xe )
!= ( P @ Xee ) )
| ( ( P @ Xh )
!= ( P @ Xhh ) ) ) ) ).
%------------------------------------------------------------------------------