TPTP Problem File: PUZ081^3.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : PUZ081^3 : TPTP v9.0.0. Released v3.6.0.
% Domain : Puzzles
% Problem : 1 of http://philosophy.hku.hk/think/logic/knight.php
% Version : Especial.
% English : A very special island is inhabited only by knights and knaves.
% Knights always tell the truth, and knaves always lie. You meet two
% inhabitants: Zoey and Mel. Zoey tells you that Mel is a knave. Mel
% says, `Neither Zoey nor I are knaves'. Who is a knight and who is
% a knave?
% Refs :
% Source : [TPTP]
% Names :
% Status : Theorem
% Rating : 0.12 v9.0.0, 0.17 v8.2.0, 0.18 v8.1.0, 0.17 v7.4.0, 0.22 v7.3.0, 0.20 v7.2.0, 0.25 v7.1.0, 0.29 v7.0.0, 0.25 v6.4.0, 0.29 v6.3.0, 0.33 v6.2.0, 0.17 v6.1.0, 0.33 v5.5.0, 0.00 v5.3.0, 0.50 v5.2.0, 0.25 v5.1.0, 0.00 v3.7.0
% Syntax : Number of formulae : 11 ( 0 unt; 5 typ; 0 def)
% Number of atoms : 13 ( 0 equ; 0 cnn)
% Maximal formula atoms : 3 ( 2 avg)
% Number of connectives : 27 ( 3 ~; 0 |; 4 &; 17 @)
% ( 0 <=>; 2 =>; 0 <=; 1 <~>)
% Maximal formula depth : 7 ( 5 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 4 ( 4 >; 0 *; 0 +; 0 <<)
% Number of symbols : 5 ( 5 usr; 2 con; 0-2 aty)
% Number of variables : 7 ( 0 ^; 5 !; 2 ?; 7 :)
% SPC : TH0_THM_NEQ_NAR
% Comments : See http://philosophy.hku.hk/think/logic/knight.php
% : This version finds a knight and a knave
%------------------------------------------------------------------------------
%----Type declarations
thf(mel_type,type,
mel: $i ).
thf(zoey_type,type,
zoey: $i ).
thf(knight_type,type,
knight: $i > $o ).
thf(knave_type,type,
knave: $i > $o ).
thf(says_type,type,
says: $i > $o > $o ).
%----A very special island is inhabited only by knights and knaves.
thf(knights_xor_knaves,axiom,
! [P: $i] :
( ( knight @ P )
<~> ( knave @ P ) ) ).
%----Knights always tell the truth
thf(knights_tell_truth,axiom,
! [P: $i,S: $o] :
( ( ( knight @ P )
& ( says @ P @ S ) )
=> S ) ).
%----Knaves always lie
thf(knaves_lie,axiom,
! [P: $i,S: $o] :
( ( ( knave @ P )
& ( says @ P @ S ) )
=> ~ S ) ).
%----Zoey says 'Mel is a knave'
thf(zoey_speaks,axiom,
says @ zoey @ ( knave @ mel ) ).
%----Mel says `Neither Zoey nor I are knaves.'
thf(mel_speaks,axiom,
( says @ mel
@ ( ~ ( knave @ zoey )
& ~ ( knave @ mel ) ) ) ).
%----What are Zoey and Mel
thf(who_is_knight_and_knave,conjecture,
? [Knight: $i,Knave: $i] :
( ( knight @ Knight )
& ( knave @ Knave ) ) ).
%------------------------------------------------------------------------------