TPTP Problem File: PUZ047^5.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : PUZ047^5 : TPTP v9.0.0. Released v4.0.0.
% Domain : Puzzles
% Problem : TPS problem THM100A
% Version : Especial.
% English : A naive formalization of the problem of moving man wolf goat
% cabbage from south to north side of river.
% Refs : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source : [Bro09]
% Names : tps_0543 [Bro09]
% : tps_0544 [Bro09]
% : tps_0545 [Bro09]
% : tps_0427 [Bro09]
% : THM100 [TPS]
% : THM100A [TPS]
% : THM100B [TPS]
% : THM100-TPS2 [TPS]
% Status : Theorem
% Rating : 0.25 v8.2.0, 0.27 v8.1.0, 0.25 v7.4.0, 0.22 v7.3.0, 0.20 v7.2.0, 0.25 v7.1.0, 0.29 v7.0.0, 0.25 v6.4.0, 0.29 v6.3.0, 0.33 v6.2.0, 0.17 v6.1.0, 0.33 v6.0.0, 0.17 v5.5.0, 0.00 v5.3.0, 0.25 v5.2.0, 0.00 v4.0.1, 0.33 v4.0.0
% Syntax : Number of formulae : 11 ( 0 unt; 10 typ; 0 def)
% Number of atoms : 30 ( 0 equ; 0 cnn)
% Maximal formula atoms : 30 ( 30 avg)
% Number of connectives : 193 ( 0 ~; 0 |; 14 &; 164 @)
% ( 0 <=>; 15 =>; 0 <=; 0 <~>)
% Maximal formula depth : 23 ( 23 avg)
% Number of types : 3 ( 2 usr)
% Number of type conns : 9 ( 9 >; 0 *; 0 +; 0 <<)
% Number of symbols : 8 ( 8 usr; 3 con; 0-5 aty)
% Number of variables : 19 ( 0 ^; 18 !; 1 ?; 19 :)
% SPC : TH0_THM_NEQ_NAR
% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
% project in the Department of Mathematical Sciences at Carnegie
% Mellon University. Distributed under the Creative Commons copyleft
% license: http://creativecommons.org/licenses/by-sa/3.0/
%------------------------------------------------------------------------------
thf(a_type,type,
a: $tType ).
thf(b_type,type,
b: $tType ).
thf(cN,type,
cN: a ).
thf(cP,type,
cP: a > a > a > a > b > $o ).
thf(cD,type,
cD: b > b ).
thf(cS,type,
cS: a ).
thf(cG,type,
cG: b > b ).
thf(cW,type,
cW: b > b ).
thf(cL,type,
cL: b > b ).
thf(cO,type,
cO: b ).
thf(cTHM100A,conjecture,
( ( ( cP @ cS @ cS @ cS @ cS @ cO )
& ! [T: b] :
( ( cP @ cS @ cN @ cS @ cN @ T )
=> ( cP @ cN @ cN @ cS @ cN @ ( cL @ T ) ) )
& ! [T1: b] :
( ( cP @ cN @ cN @ cS @ cN @ T1 )
=> ( cP @ cS @ cN @ cS @ cN @ ( cL @ T1 ) ) )
& ! [T2: b] :
( ( cP @ cS @ cS @ cN @ cS @ T2 )
=> ( cP @ cN @ cS @ cN @ cS @ ( cL @ T2 ) ) )
& ! [T3: b] :
( ( cP @ cN @ cS @ cN @ cS @ T3 )
=> ( cP @ cS @ cS @ cN @ cS @ ( cL @ T3 ) ) )
& ! [T4: b] :
( ( cP @ cS @ cS @ cS @ cN @ T4 )
=> ( cP @ cN @ cN @ cS @ cN @ ( cW @ T4 ) ) )
& ! [T5: b] :
( ( cP @ cN @ cN @ cS @ cN @ T5 )
=> ( cP @ cS @ cS @ cS @ cN @ ( cW @ T5 ) ) )
& ! [T6: b] :
( ( cP @ cS @ cS @ cN @ cS @ T6 )
=> ( cP @ cN @ cN @ cN @ cS @ ( cW @ T6 ) ) )
& ! [T7: b] :
( ( cP @ cN @ cN @ cN @ cS @ T7 )
=> ( cP @ cS @ cS @ cN @ cS @ ( cW @ T7 ) ) )
& ! [X: a,Y: a,U: b] :
( ( cP @ cS @ X @ cS @ Y @ U )
=> ( cP @ cN @ X @ cN @ Y @ ( cG @ U ) ) )
& ! [X1: a,Y1: a,V: b] :
( ( cP @ cN @ X1 @ cN @ Y1 @ V )
=> ( cP @ cS @ X1 @ cS @ Y1 @ ( cG @ V ) ) )
& ! [T8: b] :
( ( cP @ cS @ cN @ cS @ cS @ T8 )
=> ( cP @ cN @ cN @ cS @ cN @ ( cD @ T8 ) ) )
& ! [T9: b] :
( ( cP @ cN @ cN @ cS @ cN @ T9 )
=> ( cP @ cS @ cN @ cS @ cS @ ( cD @ T9 ) ) )
& ! [U1: b] :
( ( cP @ cS @ cS @ cN @ cS @ U1 )
=> ( cP @ cN @ cS @ cN @ cN @ ( cD @ U1 ) ) )
& ! [V1: b] :
( ( cP @ cN @ cS @ cN @ cN @ V1 )
=> ( cP @ cS @ cS @ cN @ cS @ ( cD @ V1 ) ) ) )
=> ? [Z: b] : ( cP @ cN @ cN @ cN @ cN @ Z ) ) ).
%------------------------------------------------------------------------------