TPTP Problem File: PRO018+2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : PRO018+2 : TPTP v9.0.0. Released v4.0.0.
% Domain : Processes
% Problem : PSL cliff problem coe-7.3
% Version : Especial : Reduced > Especial.
% English :
% Refs : [Hal09] Halcomb (2009), Email to G. Sutcliffe
% Source : [Hal09]
% Names : minimal-subset-p9__coe-7.3-pd [Hal09]
% Status : Theorem
% Rating : 0.39 v9.0.0, 0.44 v8.2.0, 0.39 v8.1.0, 0.36 v7.5.0, 0.44 v7.4.0, 0.33 v7.3.0, 0.38 v7.2.0, 0.34 v7.1.0, 0.39 v7.0.0, 0.37 v6.4.0, 0.42 v6.3.0, 0.50 v6.2.0, 0.52 v6.1.0, 0.70 v6.0.0, 0.61 v5.5.0, 0.74 v5.4.0, 0.75 v5.3.0, 0.74 v5.2.0, 0.65 v5.1.0, 0.62 v4.1.0, 0.61 v4.0.1, 0.65 v4.0.0
% Syntax : Number of formulae : 46 ( 12 unt; 0 def)
% Number of atoms : 151 ( 12 equ)
% Maximal formula atoms : 16 ( 3 avg)
% Number of connectives : 126 ( 21 ~; 6 |; 61 &)
% ( 7 <=>; 31 =>; 0 <=; 0 <~>)
% Maximal formula depth : 16 ( 5 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 18 ( 17 usr; 0 prp; 1-3 aty)
% Number of functors : 5 ( 5 usr; 5 con; 0-0 aty)
% Number of variables : 107 ( 84 !; 23 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments :
%------------------------------------------------------------------------------
fof(sos,axiom,
! [X0,X1,X2,X3] :
( ( min_precedes(X0,X1,X3)
& min_precedes(X1,X2,X3) )
=> min_precedes(X0,X2,X3) ) ).
fof(sos_01,axiom,
! [X4,X5,X6] :
( ( earlier(X4,X5)
& earlier(X5,X6) )
=> earlier(X4,X6) ) ).
fof(sos_02,axiom,
! [X7,X8,X9,X10] :
( ( occurrence_of(X9,X10)
& root_occ(X7,X9)
& root_occ(X8,X9) )
=> X7 = X8 ) ).
fof(sos_03,axiom,
! [X11,X12,X13,X14] :
( ( occurrence_of(X13,X14)
& ~ atomic(X14)
& leaf_occ(X11,X13)
& leaf_occ(X12,X13) )
=> X11 = X12 ) ).
fof(sos_04,axiom,
! [X15,X16,X17] :
( next_subocc(X15,X16,X17)
<=> ( min_precedes(X15,X16,X17)
& ~ ? [X18] :
( min_precedes(X15,X18,X17)
& min_precedes(X18,X16,X17) ) ) ) ).
fof(sos_05,axiom,
! [X19,X20,X21] :
( next_subocc(X19,X20,X21)
=> ( arboreal(X19)
& arboreal(X20) ) ) ).
fof(sos_06,axiom,
! [X22,X23,X24] :
( min_precedes(X22,X23,X24)
=> precedes(X22,X23) ) ).
fof(sos_07,axiom,
! [X25,X26,X27] :
( min_precedes(X25,X26,X27)
=> ~ root(X26,X27) ) ).
fof(sos_08,axiom,
! [X28,X29] :
( precedes(X28,X29)
<=> ( earlier(X28,X29)
& legal(X29) ) ) ).
fof(sos_09,axiom,
! [X30,X31] :
( earlier(X30,X31)
=> ~ earlier(X31,X30) ) ).
fof(sos_10,axiom,
! [X32,X33] :
( root_occ(X32,X33)
<=> ? [X34] :
( occurrence_of(X33,X34)
& subactivity_occurrence(X32,X33)
& root(X32,X34) ) ) ).
fof(sos_11,axiom,
! [X35,X36] :
( leaf_occ(X35,X36)
<=> ? [X37] :
( occurrence_of(X36,X37)
& subactivity_occurrence(X35,X36)
& leaf(X35,X37) ) ) ).
fof(sos_12,axiom,
! [X38,X39] :
( root(X38,X39)
=> legal(X38) ) ).
fof(sos_13,axiom,
! [X40,X41] :
( occurrence_of(X40,X41)
=> ( arboreal(X40)
<=> atomic(X41) ) ) ).
fof(sos_14,axiom,
! [X42,X43] :
( leaf(X42,X43)
<=> ( ( root(X42,X43)
| ? [X44] : min_precedes(X44,X42,X43) )
& ~ ? [X45] : min_precedes(X42,X45,X43) ) ) ).
fof(sos_15,axiom,
! [X46,X47] :
( atocc(X46,X47)
<=> ? [X48] :
( subactivity(X47,X48)
& atomic(X48)
& occurrence_of(X46,X48) ) ) ).
fof(sos_16,axiom,
! [X49,X50] :
( ( atocc(X49,X50)
& legal(X49) )
=> root(X49,X50) ) ).
fof(sos_17,axiom,
! [X51] :
( legal(X51)
=> arboreal(X51) ) ).
fof(sos_18,axiom,
! [X52] :
( activity_occurrence(X52)
=> ? [X53] :
( activity(X53)
& occurrence_of(X52,X53) ) ) ).
fof(sos_19,axiom,
! [X54,X55] :
( subactivity_occurrence(X54,X55)
=> ( activity_occurrence(X54)
& activity_occurrence(X55) ) ) ).
fof(sos_20,axiom,
! [X56,X57,X58] :
( ( occurrence_of(X56,X58)
& root_occ(X57,X56) )
=> ~ ? [X59] : min_precedes(X59,X57,X58) ) ).
fof(sos_21,axiom,
! [X60,X61,X62] :
( ( occurrence_of(X60,X62)
& leaf_occ(X61,X60) )
=> ~ ? [X63] : min_precedes(X61,X63,X62) ) ).
fof(sos_22,axiom,
! [X64,X65,X66] :
( ( occurrence_of(X64,X65)
& occurrence_of(X64,X66) )
=> X65 = X66 ) ).
fof(sos_23,axiom,
! [X67,X68] :
( ( leaf(X67,X68)
& ~ atomic(X68) )
=> ? [X69] :
( occurrence_of(X69,X68)
& leaf_occ(X67,X69) ) ) ).
fof(sos_24,axiom,
! [X70,X71,X72] :
( min_precedes(X71,X72,X70)
=> ? [X73] :
( occurrence_of(X73,X70)
& subactivity_occurrence(X71,X73)
& subactivity_occurrence(X72,X73) ) ) ).
fof(sos_25,axiom,
! [X74,X75] :
( ( leaf(X74,X75)
& ~ atomic(X75) )
=> ? [X76] :
( occurrence_of(X76,X75)
& leaf_occ(X74,X76) ) ) ).
fof(sos_26,axiom,
! [X77,X78,X79] :
( min_precedes(X78,X79,X77)
=> ? [X80,X81] :
( subactivity(X80,X77)
& subactivity(X81,X77)
& atocc(X78,X80)
& atocc(X79,X81) ) ) ).
fof(sos_27,axiom,
! [X82,X83] :
( root(X83,X82)
=> ? [X84] :
( subactivity(X84,X82)
& atocc(X83,X84) ) ) ).
fof(sos_28,axiom,
! [X85,X86,X87,X88] :
( ( occurrence_of(X86,X85)
& arboreal(X87)
& arboreal(X88)
& subactivity_occurrence(X87,X86)
& subactivity_occurrence(X88,X86) )
=> ( min_precedes(X87,X88,X85)
| min_precedes(X88,X87,X85)
| X87 = X88 ) ) ).
fof(sos_29,axiom,
! [X89,X90] :
( occurrence_of(X90,X89)
=> ( activity(X89)
& activity_occurrence(X90) ) ) ).
fof(sos_30,axiom,
! [X91,X92] :
( ( occurrence_of(X92,X91)
& ~ atomic(X91) )
=> ? [X93] :
( root(X93,X91)
& subactivity_occurrence(X93,X92) ) ) ).
fof(sos_31,axiom,
! [X94] :
( activity(X94)
=> subactivity(X94,X94) ) ).
fof(sos_32,axiom,
! [X95,X96] :
( ( occurrence_of(X96,tptp0)
& subactivity_occurrence(X95,X96)
& arboreal(X95)
& ~ leaf_occ(X95,X96) )
=> ? [X97,X98,X99] :
( occurrence_of(X97,tptp3)
& next_subocc(X95,X97,tptp0)
& occurrence_of(X98,tptp4)
& min_precedes(X97,X98,tptp0)
& ( occurrence_of(X99,tptp1)
| occurrence_of(X99,tptp2) )
& min_precedes(X98,X99,tptp0)
& ! [X100] :
( min_precedes(X97,X100,tptp0)
=> ( X100 = X98
| X100 = X99 ) ) ) ) ).
fof(sos_33,axiom,
activity(tptp0) ).
fof(sos_34,axiom,
~ atomic(tptp0) ).
fof(sos_35,axiom,
atomic(tptp4) ).
fof(sos_36,axiom,
atomic(tptp1) ).
fof(sos_37,axiom,
atomic(tptp2) ).
fof(sos_38,axiom,
atomic(tptp3) ).
fof(sos_39,axiom,
tptp4 != tptp3 ).
fof(sos_40,axiom,
tptp4 != tptp1 ).
fof(sos_41,axiom,
tptp4 != tptp2 ).
fof(sos_42,axiom,
tptp3 != tptp1 ).
fof(sos_43,axiom,
tptp3 != tptp2 ).
fof(sos_44,axiom,
tptp1 != tptp2 ).
fof(goals,conjecture,
! [X101,X102] :
( ( occurrence_of(X102,tptp0)
& subactivity_occurrence(X101,X102)
& arboreal(X101)
& ~ leaf_occ(X101,X102) )
=> ? [X103,X104] :
( occurrence_of(X103,tptp3)
& next_subocc(X101,X103,tptp0)
& ( occurrence_of(X104,tptp1)
| occurrence_of(X104,tptp2) )
& min_precedes(X103,X104,tptp0)
& leaf_occ(X104,X102)
& ( occurrence_of(X104,tptp1)
=> ~ ? [X105] :
( occurrence_of(X105,tptp2)
& min_precedes(X103,X105,tptp0) ) )
& ( occurrence_of(X104,tptp2)
=> ~ ? [X106] :
( occurrence_of(X106,tptp1)
& min_precedes(X103,X106,tptp0) ) ) ) ) ).
%------------------------------------------------------------------------------