TPTP Problem File: PRO009+1.p

View Solutions - Solve Problem

%------------------------------------------------------------------------------
% File     : PRO009+1 : TPTP v9.0.0. Released v4.0.0.
% Domain   : Processes
% Problem  : PSL cliff problem coe-7.1.2
% Version  : Especial.
% English  : 
% Refs     : [Hal09] Halcomb (2009), Email to G. Sutcliffe
% Source   : [Hal09]
% Names    : psl-subset-1016__coe-7.1.2-pd [Hal09]

% Status   : Theorem
% Rating   : 0.27 v9.0.0, 0.31 v8.2.0, 0.28 v8.1.0, 0.25 v7.5.0, 0.28 v7.4.0, 0.30 v7.3.0, 0.24 v7.2.0, 0.21 v7.1.0, 0.26 v7.0.0, 0.20 v6.4.0, 0.23 v6.3.0, 0.29 v6.2.0, 0.36 v6.1.0, 0.53 v6.0.0, 0.43 v5.5.0, 0.52 v5.4.0, 0.50 v5.3.0, 0.48 v5.2.0, 0.35 v5.1.0, 0.43 v5.0.0, 0.42 v4.1.0, 0.39 v4.0.1, 0.43 v4.0.0
% Syntax   : Number of formulae    :   49 (  12 unt;   0 def)
%            Number of atoms       :  151 (   9 equ)
%            Maximal formula atoms :    9 (   3 avg)
%            Number of connectives :  119 (  17   ~;   7   |;  57   &)
%                                         (   7 <=>;  31  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   12 (   5 avg)
%            Maximal term depth    :    1 (   1 avg)
%            Number of predicates  :   18 (  17 usr;   0 prp; 1-3 aty)
%            Number of functors    :    5 (   5 usr;   5 con; 0-0 aty)
%            Number of variables   :  112 (  92   !;  20   ?)
% SPC      : FOF_THM_RFO_SEQ

% Comments :
%------------------------------------------------------------------------------
fof(sos,axiom,
    ! [X0,X1] :
      ( occurrence_of(X1,X0)
     => ( activity(X0)
        & activity_occurrence(X1) ) ) ).

fof(sos_01,axiom,
    ! [X2] :
      ( activity_occurrence(X2)
     => ? [X3] :
          ( activity(X3)
          & occurrence_of(X2,X3) ) ) ).

fof(sos_02,axiom,
    ! [X4,X5,X6] :
      ( ( occurrence_of(X4,X5)
        & occurrence_of(X4,X6) )
     => X5 = X6 ) ).

fof(sos_03,axiom,
    ! [X7] :
      ( activity(X7)
     => subactivity(X7,X7) ) ).

fof(sos_04,axiom,
    ! [X8,X9] :
      ( earlier(X8,X9)
     => ~ earlier(X9,X8) ) ).

fof(sos_05,axiom,
    ! [X10,X11,X12] :
      ( ( earlier(X10,X11)
        & earlier(X11,X12) )
     => earlier(X10,X12) ) ).

fof(sos_06,axiom,
    ! [X13,X14,X15] :
      ( ( earlier(X13,X14)
        & earlier(X15,X14) )
     => ( earlier(X15,X13)
        | earlier(X13,X15)
        | X13 = X15 ) ) ).

fof(sos_07,axiom,
    ! [X16,X17] :
      ( occurrence_of(X16,X17)
     => ( arboreal(X16)
      <=> atomic(X17) ) ) ).

fof(sos_08,axiom,
    ! [X18] :
      ( legal(X18)
     => arboreal(X18) ) ).

fof(sos_09,axiom,
    ! [X19,X20] :
      ( ( legal(X19)
        & earlier(X20,X19) )
     => legal(X20) ) ).

fof(sos_10,axiom,
    ! [X21,X22] :
      ( precedes(X21,X22)
    <=> ( earlier(X21,X22)
        & legal(X22) ) ) ).

fof(sos_11,axiom,
    ! [X23,X24,X25] :
      ( min_precedes(X24,X25,X23)
     => ? [X26,X27] :
          ( subactivity(X26,X23)
          & subactivity(X27,X23)
          & atocc(X24,X26)
          & atocc(X25,X27) ) ) ).

fof(sos_12,axiom,
    ! [X28,X29] :
      ( root(X29,X28)
     => ? [X30] :
          ( subactivity(X30,X28)
          & atocc(X29,X30) ) ) ).

fof(sos_13,axiom,
    ! [X31,X32,X33] :
      ( min_precedes(X31,X32,X33)
     => ? [X34] :
          ( root(X34,X33)
          & min_precedes(X34,X32,X33) ) ) ).

fof(sos_14,axiom,
    ! [X35,X36,X37] :
      ( min_precedes(X35,X36,X37)
     => ~ root(X36,X37) ) ).

fof(sos_15,axiom,
    ! [X38,X39,X40] :
      ( min_precedes(X38,X39,X40)
     => precedes(X38,X39) ) ).

fof(sos_16,axiom,
    ! [X41,X42] :
      ( root(X41,X42)
     => legal(X41) ) ).

fof(sos_17,axiom,
    ! [X43,X44] :
      ( ( atocc(X43,X44)
        & legal(X43) )
     => root(X43,X44) ) ).

fof(sos_18,axiom,
    ! [X45,X46,X47,X48] :
      ( ( min_precedes(X45,X46,X48)
        & min_precedes(X45,X47,X48)
        & precedes(X46,X47) )
     => min_precedes(X46,X47,X48) ) ).

fof(sos_19,axiom,
    ! [X49,X50,X51] :
      ( min_precedes(X49,X50,X51)
     => ~ atomic(X51) ) ).

fof(sos_20,axiom,
    ! [X52,X53,X54,X55] :
      ( ( min_precedes(X53,X52,X55)
        & min_precedes(X54,X52,X55)
        & precedes(X53,X54) )
     => min_precedes(X53,X54,X55) ) ).

fof(sos_21,axiom,
    ! [X56,X57] :
      ( leaf(X56,X57)
    <=> ( ( root(X56,X57)
          | ? [X58] : min_precedes(X58,X56,X57) )
        & ~ ? [X59] : min_precedes(X56,X59,X57) ) ) ).

fof(sos_22,axiom,
    ! [X60,X61,X62] :
      ( next_subocc(X60,X61,X62)
    <=> ( min_precedes(X60,X61,X62)
        & ~ ? [X63] :
              ( min_precedes(X60,X63,X62)
              & min_precedes(X63,X61,X62) ) ) ) ).

fof(sos_23,axiom,
    ! [X64,X65] :
      ( atocc(X64,X65)
    <=> ? [X66] :
          ( subactivity(X65,X66)
          & atomic(X66)
          & occurrence_of(X64,X66) ) ) ).

fof(sos_24,axiom,
    ! [X67,X68] :
      ( subactivity_occurrence(X67,X68)
     => ( activity_occurrence(X67)
        & activity_occurrence(X68) ) ) ).

fof(sos_25,axiom,
    ! [X69,X70,X71] :
      ( min_precedes(X70,X71,X69)
     => ? [X72] :
          ( occurrence_of(X72,X69)
          & subactivity_occurrence(X70,X72)
          & subactivity_occurrence(X71,X72) ) ) ).

fof(sos_26,axiom,
    ! [X73,X74] :
      ( ( root(X74,X73)
        & ~ atomic(X73) )
     => ? [X75] :
          ( occurrence_of(X75,X73)
          & subactivity_occurrence(X74,X75) ) ) ).

fof(sos_27,axiom,
    ! [X76,X77] :
      ( ( occurrence_of(X77,X76)
        & ~ atomic(X76) )
     => ? [X78] :
          ( root(X78,X76)
          & subactivity_occurrence(X78,X77) ) ) ).

fof(sos_28,axiom,
    ! [X79,X80,X81,X82] :
      ( ( occurrence_of(X80,X79)
        & arboreal(X81)
        & arboreal(X82)
        & subactivity_occurrence(X81,X80)
        & subactivity_occurrence(X82,X80) )
     => ( min_precedes(X81,X82,X79)
        | min_precedes(X82,X81,X79)
        | X81 = X82 ) ) ).

fof(sos_29,axiom,
    ! [X83,X84,X85,X86] :
      ( ( min_precedes(X83,X84,X85)
        & occurrence_of(X86,X85)
        & subactivity_occurrence(X84,X86) )
     => subactivity_occurrence(X83,X86) ) ).

fof(sos_30,axiom,
    ! [X87,X88,X89,X90] :
      ( ( occurrence_of(X89,X87)
        & occurrence_of(X90,X88)
        & ~ atomic(X87)
        & subactivity_occurrence(X89,X90) )
     => subactivity(X87,X88) ) ).

fof(sos_31,axiom,
    ! [X91,X92,X93] :
      ( ( subactivity_occurrence(X91,X92)
        & subactivity_occurrence(X92,X93) )
     => subactivity_occurrence(X91,X93) ) ).

fof(sos_32,axiom,
    ! [X94,X95,X96,X97] :
      ( ( occurrence_of(X96,X94)
        & occurrence_of(X97,X95)
        & subactivity(X94,X95)
        & ~ subactivity_occurrence(X96,X97) )
     => ? [X98] :
          ( subactivity_occurrence(X98,X97)
          & ~ subactivity_occurrence(X98,X96) ) ) ).

fof(sos_33,axiom,
    ! [X99,X100] :
      ( root_occ(X99,X100)
    <=> ? [X101] :
          ( occurrence_of(X100,X101)
          & subactivity_occurrence(X99,X100)
          & root(X99,X101) ) ) ).

fof(sos_34,axiom,
    ! [X102,X103] :
      ( leaf_occ(X102,X103)
    <=> ? [X104] :
          ( occurrence_of(X103,X104)
          & subactivity_occurrence(X102,X103)
          & leaf(X102,X104) ) ) ).

fof(sos_35,axiom,
    ! [X105] :
      ( occurrence_of(X105,tptp0)
     => ? [X106,X107,X108] :
          ( occurrence_of(X106,tptp3)
          & root_occ(X106,X105)
          & occurrence_of(X107,tptp4)
          & next_subocc(X106,X107,tptp0)
          & ( occurrence_of(X108,tptp2)
            | occurrence_of(X108,tptp1) )
          & next_subocc(X107,X108,tptp0)
          & leaf_occ(X108,X105) ) ) ).

fof(sos_36,axiom,
    activity(tptp0) ).

fof(sos_37,axiom,
    ~ atomic(tptp0) ).

fof(sos_38,axiom,
    atomic(tptp4) ).

fof(sos_39,axiom,
    atomic(tptp2) ).

fof(sos_40,axiom,
    atomic(tptp1) ).

fof(sos_41,axiom,
    atomic(tptp3) ).

fof(sos_42,axiom,
    tptp4 != tptp3 ).

fof(sos_43,axiom,
    tptp4 != tptp2 ).

fof(sos_44,axiom,
    tptp4 != tptp1 ).

fof(sos_45,axiom,
    tptp3 != tptp2 ).

fof(sos_46,axiom,
    tptp3 != tptp1 ).

fof(sos_47,axiom,
    tptp2 != tptp1 ).

fof(goals,conjecture,
    ! [X109] :
      ( occurrence_of(X109,tptp0)
     => ? [X110,X111] :
          ( occurrence_of(X110,tptp3)
          & root_occ(X110,X109)
          & ( occurrence_of(X111,tptp2)
            | occurrence_of(X111,tptp1) )
          & min_precedes(X110,X111,tptp0)
          & leaf_occ(X111,X109) ) ) ).

%------------------------------------------------------------------------------