TPTP Problem File: PRO004+4.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : PRO004+4 : TPTP v9.0.0. Released v4.0.0.
% Domain : Processes
% Problem : PSL cliff problem coe-6-lemma-no-disjunct
% Version : Especial : Augmented > Especial.
% English :
% Refs : [Hal09] Halcomb (2009), Email to G. Sutcliffe
% Source : [Hal09]
% Names : unique-cat-p9x__coe-6-lemma-no-disjunct-pd [Hal09]
% Status : Theorem
% Rating : 0.36 v9.0.0, 0.42 v8.2.0, 0.36 v8.1.0, 0.33 v7.5.0, 0.41 v7.4.0, 0.23 v7.3.0, 0.28 v7.2.0, 0.24 v7.1.0, 0.26 v7.0.0, 0.37 v6.4.0, 0.35 v6.3.0, 0.29 v6.2.0, 0.40 v6.1.0, 0.50 v6.0.0, 0.43 v5.5.0, 0.59 v5.4.0, 0.61 v5.3.0, 0.63 v5.2.0, 0.40 v5.1.0, 0.48 v5.0.0, 0.54 v4.1.0, 0.57 v4.0.0
% Syntax : Number of formulae : 49 ( 13 unt; 0 def)
% Number of atoms : 151 ( 12 equ)
% Maximal formula atoms : 8 ( 3 avg)
% Number of connectives : 124 ( 22 ~; 3 |; 62 &)
% ( 7 <=>; 30 =>; 0 <=; 0 <~>)
% Maximal formula depth : 13 ( 6 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 18 ( 17 usr; 0 prp; 1-3 aty)
% Number of functors : 5 ( 5 usr; 5 con; 0-0 aty)
% Number of variables : 112 ( 94 !; 18 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments :
%------------------------------------------------------------------------------
fof(sos,axiom,
! [X0,X1] :
( ( occurrence_of(X1,X0)
& ~ atomic(X0) )
=> ? [X2] :
( root(X2,X0)
& subactivity_occurrence(X2,X1) ) ) ).
fof(sos_01,axiom,
! [X3,X4,X5,X6,X7] :
( ( occurrence_of(X4,X3)
& root_occ(X6,X4)
& leaf_occ(X7,X4)
& subactivity_occurrence(X5,X4)
& min_precedes(X6,X5,X3)
& X5 != X7 )
=> min_precedes(X5,X7,X3) ) ).
fof(sos_02,axiom,
! [X8,X9,X10,X11] :
( ( occurrence_of(X9,X8)
& subactivity_occurrence(X10,X9)
& leaf_occ(X11,X9)
& arboreal(X10)
& ~ min_precedes(X10,X11,X8) )
=> X11 = X10 ) ).
fof(sos_03,axiom,
! [X12,X13] :
( occurrence_of(X13,X12)
=> ( activity(X12)
& activity_occurrence(X13) ) ) ).
fof(sos_04,axiom,
! [X14,X15,X16,X17] :
( ( occurrence_of(X15,X14)
& arboreal(X16)
& arboreal(X17)
& subactivity_occurrence(X16,X15)
& subactivity_occurrence(X17,X15) )
=> ( min_precedes(X16,X17,X14)
| min_precedes(X17,X16,X14)
| X16 = X17 ) ) ).
fof(sos_05,axiom,
! [X18,X19] :
( root(X19,X18)
=> ? [X20] :
( subactivity(X20,X18)
& atocc(X19,X20) ) ) ).
fof(sos_06,axiom,
! [X21,X22,X23] :
( min_precedes(X22,X23,X21)
=> ? [X24] :
( occurrence_of(X24,X21)
& subactivity_occurrence(X22,X24)
& subactivity_occurrence(X23,X24) ) ) ).
fof(sos_07,axiom,
! [X25,X26] :
( ( leaf(X25,X26)
& ~ atomic(X26) )
=> ? [X27] :
( occurrence_of(X27,X26)
& leaf_occ(X25,X27) ) ) ).
fof(sos_08,axiom,
! [X28,X29,X30] :
( ( occurrence_of(X28,X29)
& occurrence_of(X28,X30) )
=> X29 = X30 ) ).
fof(sos_09,axiom,
! [X31,X32,X33] :
( ( occurrence_of(X31,X33)
& leaf_occ(X32,X31) )
=> ~ ? [X34] : min_precedes(X32,X34,X33) ) ).
fof(sos_10,axiom,
! [X35,X36,X37] :
( ( occurrence_of(X35,X37)
& root_occ(X36,X35) )
=> ~ ? [X38] : min_precedes(X38,X36,X37) ) ).
fof(sos_11,axiom,
! [X39,X40] :
( subactivity_occurrence(X39,X40)
=> ( activity_occurrence(X39)
& activity_occurrence(X40) ) ) ).
fof(sos_12,axiom,
! [X41] :
( activity_occurrence(X41)
=> ? [X42] :
( activity(X42)
& occurrence_of(X41,X42) ) ) ).
fof(sos_13,axiom,
! [X43] :
( legal(X43)
=> arboreal(X43) ) ).
fof(sos_14,axiom,
! [X44,X45] :
( atocc(X44,X45)
<=> ? [X46] :
( subactivity(X45,X46)
& atomic(X46)
& occurrence_of(X44,X46) ) ) ).
fof(sos_15,axiom,
! [X47,X48] :
( leaf(X47,X48)
<=> ( ( root(X47,X48)
| ? [X49] : min_precedes(X49,X47,X48) )
& ~ ? [X50] : min_precedes(X47,X50,X48) ) ) ).
fof(sos_16,axiom,
! [X51,X52] :
( occurrence_of(X51,X52)
=> ( arboreal(X51)
<=> atomic(X52) ) ) ).
fof(sos_17,axiom,
! [X53,X54] :
( root(X53,X54)
=> legal(X53) ) ).
fof(sos_18,axiom,
! [X55,X56] :
( leaf_occ(X55,X56)
<=> ? [X57] :
( occurrence_of(X56,X57)
& subactivity_occurrence(X55,X56)
& leaf(X55,X57) ) ) ).
fof(sos_19,axiom,
! [X58,X59] :
( root_occ(X58,X59)
<=> ? [X60] :
( occurrence_of(X59,X60)
& subactivity_occurrence(X58,X59)
& root(X58,X60) ) ) ).
fof(sos_20,axiom,
! [X61,X62] :
( earlier(X61,X62)
=> ~ earlier(X62,X61) ) ).
fof(sos_21,axiom,
! [X63,X64] :
( precedes(X63,X64)
<=> ( earlier(X63,X64)
& legal(X64) ) ) ).
fof(sos_22,axiom,
! [X65,X66,X67] :
( min_precedes(X65,X66,X67)
=> ~ root(X66,X67) ) ).
fof(sos_23,axiom,
! [X68,X69,X70] :
( min_precedes(X68,X69,X70)
=> ? [X71] :
( root(X71,X70)
& min_precedes(X71,X69,X70) ) ) ).
fof(sos_24,axiom,
! [X72,X73,X74] :
( min_precedes(X72,X73,X74)
=> precedes(X72,X73) ) ).
fof(sos_25,axiom,
! [X75,X76,X77] :
( next_subocc(X75,X76,X77)
=> ( arboreal(X75)
& arboreal(X76) ) ) ).
fof(sos_26,axiom,
! [X78,X79,X80] :
( next_subocc(X78,X79,X80)
<=> ( min_precedes(X78,X79,X80)
& ~ ? [X81] :
( min_precedes(X78,X81,X80)
& min_precedes(X81,X79,X80) ) ) ) ).
fof(sos_27,axiom,
! [X82,X83,X84,X85] :
( ( min_precedes(X82,X83,X84)
& occurrence_of(X85,X84)
& subactivity_occurrence(X83,X85) )
=> subactivity_occurrence(X82,X85) ) ).
fof(sos_28,axiom,
! [X86,X87,X88,X89] :
( ( occurrence_of(X88,X89)
& ~ atomic(X89)
& leaf_occ(X86,X88)
& leaf_occ(X87,X88) )
=> X86 = X87 ) ).
fof(sos_29,axiom,
! [X90,X91,X92,X93] :
( ( occurrence_of(X92,X93)
& root_occ(X90,X92)
& root_occ(X91,X92) )
=> X90 = X91 ) ).
fof(sos_30,axiom,
! [X94,X95,X96] :
( ( earlier(X94,X95)
& earlier(X95,X96) )
=> earlier(X94,X96) ) ).
fof(sos_31,axiom,
! [X97,X98,X99,X100] :
( ( min_precedes(X97,X98,X100)
& min_precedes(X97,X99,X100)
& precedes(X98,X99) )
=> min_precedes(X98,X99,X100) ) ).
fof(sos_32,axiom,
! [X101] :
( occurrence_of(X101,tptp0)
=> ? [X102,X103] :
( occurrence_of(X102,tptp4)
& root_occ(X102,X101)
& occurrence_of(X103,tptp3)
& leaf_occ(X103,X101)
& next_subocc(X102,X103,tptp0) ) ) ).
fof(sos_33,axiom,
activity(tptp0) ).
fof(sos_34,axiom,
~ atomic(tptp0) ).
fof(sos_35,axiom,
atomic(tptp4) ).
fof(sos_36,axiom,
atomic(tptp3) ).
fof(sos_37,axiom,
atomic(tptp2) ).
fof(sos_38,axiom,
atomic(tptp1) ).
fof(sos_39,axiom,
tptp4 != tptp1 ).
fof(sos_40,axiom,
tptp4 != tptp3 ).
fof(sos_41,axiom,
tptp4 != tptp2 ).
fof(sos_42,axiom,
tptp1 != tptp3 ).
fof(sos_43,axiom,
tptp1 != tptp2 ).
fof(sos_44,axiom,
tptp3 != tptp2 ).
fof(sos_45,axiom,
! [X104,X105] :
( ( occurrence_of(X105,tptp0)
& subactivity_occurrence(X104,X105)
& arboreal(X104)
& ~ leaf_occ(X104,X105) )
=> root_occ(X104,X105) ) ).
fof(sos_46,axiom,
! [X106,X107] :
( ( occurrence_of(X107,tptp0)
& subactivity_occurrence(X106,X107)
& arboreal(X106)
& ~ leaf_occ(X106,X107) )
=> root_occ(X106,X107) ) ).
fof(sos_47,axiom,
! [X108,X109] :
( ( occurrence_of(X109,tptp0)
& subactivity_occurrence(X108,X109)
& arboreal(X108)
& ~ leaf_occ(X108,X109) )
=> ? [X110] :
( occurrence_of(X110,tptp1)
& next_subocc(X108,X110,tptp0) ) ) ).
fof(goals,conjecture,
~ ? [X111] : occurrence_of(X111,tptp0) ).
%------------------------------------------------------------------------------