TPTP Problem File: PRO004+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : PRO004+1 : TPTP v9.0.0. Released v4.0.0.
% Domain : Processes
% Problem : PSL cliff problem coe-6-lemma-no-disjunct
% Version : Especial.
% English :
% Refs : [Hal09] Halcomb (2009), Email to G. Sutcliffe
% Source : [Hal09]
% Names : psl-subset-1016__coe-6-lemma-no-disjunct-pd [Hal09]
% Status : Theorem
% Rating : 0.85 v9.0.0, 0.83 v8.2.0, 0.81 v8.1.0, 0.69 v7.5.0, 0.81 v7.4.0, 0.77 v7.3.0, 0.76 v7.1.0, 0.74 v7.0.0, 0.77 v6.3.0, 0.75 v6.2.0, 0.84 v6.1.0, 0.90 v6.0.0, 0.87 v5.5.0, 0.93 v5.2.0, 0.85 v5.1.0, 0.86 v5.0.0, 0.96 v4.0.1, 0.91 v4.0.0
% Syntax : Number of formulae : 52 ( 13 unt; 0 def)
% Number of atoms : 158 ( 9 equ)
% Maximal formula atoms : 8 ( 3 avg)
% Number of connectives : 127 ( 21 ~; 5 |; 61 &)
% ( 7 <=>; 33 =>; 0 <=; 0 <~>)
% Maximal formula depth : 10 ( 5 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 18 ( 17 usr; 0 prp; 1-3 aty)
% Number of functors : 5 ( 5 usr; 5 con; 0-0 aty)
% Number of variables : 116 ( 97 !; 19 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments :
%------------------------------------------------------------------------------
fof(sos,axiom,
! [X0,X1] :
( occurrence_of(X1,X0)
=> ( activity(X0)
& activity_occurrence(X1) ) ) ).
fof(sos_01,axiom,
! [X2] :
( activity_occurrence(X2)
=> ? [X3] :
( activity(X3)
& occurrence_of(X2,X3) ) ) ).
fof(sos_02,axiom,
! [X4,X5,X6] :
( ( occurrence_of(X4,X5)
& occurrence_of(X4,X6) )
=> X5 = X6 ) ).
fof(sos_03,axiom,
! [X7] :
( activity(X7)
=> subactivity(X7,X7) ) ).
fof(sos_04,axiom,
! [X8,X9] :
( earlier(X8,X9)
=> ~ earlier(X9,X8) ) ).
fof(sos_05,axiom,
! [X10,X11,X12] :
( ( earlier(X10,X11)
& earlier(X11,X12) )
=> earlier(X10,X12) ) ).
fof(sos_06,axiom,
! [X13,X14,X15] :
( ( earlier(X13,X14)
& earlier(X15,X14) )
=> ( earlier(X15,X13)
| earlier(X13,X15)
| X13 = X15 ) ) ).
fof(sos_07,axiom,
! [X16,X17] :
( occurrence_of(X16,X17)
=> ( arboreal(X16)
<=> atomic(X17) ) ) ).
fof(sos_08,axiom,
! [X18] :
( legal(X18)
=> arboreal(X18) ) ).
fof(sos_09,axiom,
! [X19,X20] :
( ( legal(X19)
& earlier(X20,X19) )
=> legal(X20) ) ).
fof(sos_10,axiom,
! [X21,X22] :
( precedes(X21,X22)
<=> ( earlier(X21,X22)
& legal(X22) ) ) ).
fof(sos_11,axiom,
! [X23,X24,X25] :
( min_precedes(X24,X25,X23)
=> ? [X26,X27] :
( subactivity(X26,X23)
& subactivity(X27,X23)
& atocc(X24,X26)
& atocc(X25,X27) ) ) ).
fof(sos_12,axiom,
! [X28,X29] :
( root(X29,X28)
=> ? [X30] :
( subactivity(X30,X28)
& atocc(X29,X30) ) ) ).
fof(sos_13,axiom,
! [X31,X32,X33] :
( min_precedes(X31,X32,X33)
=> ? [X34] :
( root(X34,X33)
& min_precedes(X34,X32,X33) ) ) ).
fof(sos_14,axiom,
! [X35,X36,X37] :
( min_precedes(X35,X36,X37)
=> ~ root(X36,X37) ) ).
fof(sos_15,axiom,
! [X38,X39,X40] :
( min_precedes(X38,X39,X40)
=> precedes(X38,X39) ) ).
fof(sos_16,axiom,
! [X41,X42] :
( root(X41,X42)
=> legal(X41) ) ).
fof(sos_17,axiom,
! [X43,X44] :
( ( atocc(X43,X44)
& legal(X43) )
=> root(X43,X44) ) ).
fof(sos_18,axiom,
! [X45,X46,X47,X48] :
( ( min_precedes(X45,X46,X48)
& min_precedes(X45,X47,X48)
& precedes(X46,X47) )
=> min_precedes(X46,X47,X48) ) ).
fof(sos_19,axiom,
! [X49,X50,X51] :
( min_precedes(X49,X50,X51)
=> ~ atomic(X51) ) ).
fof(sos_20,axiom,
! [X52,X53,X54,X55] :
( ( min_precedes(X53,X52,X55)
& min_precedes(X54,X52,X55)
& precedes(X53,X54) )
=> min_precedes(X53,X54,X55) ) ).
fof(sos_21,axiom,
! [X56,X57] :
( leaf(X56,X57)
<=> ( ( root(X56,X57)
| ? [X58] : min_precedes(X58,X56,X57) )
& ~ ? [X59] : min_precedes(X56,X59,X57) ) ) ).
fof(sos_22,axiom,
! [X60,X61,X62] :
( next_subocc(X60,X61,X62)
<=> ( min_precedes(X60,X61,X62)
& ~ ? [X63] :
( min_precedes(X60,X63,X62)
& min_precedes(X63,X61,X62) ) ) ) ).
fof(sos_23,axiom,
! [X64,X65] :
( atocc(X64,X65)
<=> ? [X66] :
( subactivity(X65,X66)
& atomic(X66)
& occurrence_of(X64,X66) ) ) ).
fof(sos_24,axiom,
! [X67,X68] :
( subactivity_occurrence(X67,X68)
=> ( activity_occurrence(X67)
& activity_occurrence(X68) ) ) ).
fof(sos_25,axiom,
! [X69,X70,X71] :
( min_precedes(X70,X71,X69)
=> ? [X72] :
( occurrence_of(X72,X69)
& subactivity_occurrence(X70,X72)
& subactivity_occurrence(X71,X72) ) ) ).
fof(sos_26,axiom,
! [X73,X74] :
( ( root(X74,X73)
& ~ atomic(X73) )
=> ? [X75] :
( occurrence_of(X75,X73)
& subactivity_occurrence(X74,X75) ) ) ).
fof(sos_27,axiom,
! [X76,X77] :
( ( occurrence_of(X77,X76)
& ~ atomic(X76) )
=> ? [X78] :
( root(X78,X76)
& subactivity_occurrence(X78,X77) ) ) ).
fof(sos_28,axiom,
! [X79,X80,X81,X82] :
( ( occurrence_of(X80,X79)
& arboreal(X81)
& arboreal(X82)
& subactivity_occurrence(X81,X80)
& subactivity_occurrence(X82,X80) )
=> ( min_precedes(X81,X82,X79)
| min_precedes(X82,X81,X79)
| X81 = X82 ) ) ).
fof(sos_29,axiom,
! [X83,X84,X85,X86] :
( ( min_precedes(X83,X84,X85)
& occurrence_of(X86,X85)
& subactivity_occurrence(X84,X86) )
=> subactivity_occurrence(X83,X86) ) ).
fof(sos_30,axiom,
! [X87,X88,X89,X90] :
( ( occurrence_of(X89,X87)
& occurrence_of(X90,X88)
& ~ atomic(X87)
& subactivity_occurrence(X89,X90) )
=> subactivity(X87,X88) ) ).
fof(sos_31,axiom,
! [X91,X92,X93] :
( ( subactivity_occurrence(X91,X92)
& subactivity_occurrence(X92,X93) )
=> subactivity_occurrence(X91,X93) ) ).
fof(sos_32,axiom,
! [X94,X95,X96,X97] :
( ( occurrence_of(X96,X94)
& occurrence_of(X97,X95)
& subactivity(X94,X95)
& ~ subactivity_occurrence(X96,X97) )
=> ? [X98] :
( subactivity_occurrence(X98,X97)
& ~ subactivity_occurrence(X98,X96) ) ) ).
fof(sos_33,axiom,
! [X99,X100] :
( root_occ(X99,X100)
<=> ? [X101] :
( occurrence_of(X100,X101)
& subactivity_occurrence(X99,X100)
& root(X99,X101) ) ) ).
fof(sos_34,axiom,
! [X102,X103] :
( leaf_occ(X102,X103)
<=> ? [X104] :
( occurrence_of(X103,X104)
& subactivity_occurrence(X102,X103)
& leaf(X102,X104) ) ) ).
fof(sos_35,axiom,
! [X105] :
( occurrence_of(X105,tptp0)
=> ? [X106,X107] :
( occurrence_of(X106,tptp4)
& root_occ(X106,X105)
& occurrence_of(X107,tptp3)
& leaf_occ(X107,X105)
& next_subocc(X106,X107,tptp0) ) ) ).
fof(sos_36,axiom,
activity(tptp0) ).
fof(sos_37,axiom,
~ atomic(tptp0) ).
fof(sos_38,axiom,
atomic(tptp4) ).
fof(sos_39,axiom,
atomic(tptp3) ).
fof(sos_40,axiom,
atomic(tptp2) ).
fof(sos_41,axiom,
atomic(tptp1) ).
fof(sos_42,axiom,
tptp4 != tptp1 ).
fof(sos_43,axiom,
tptp4 != tptp3 ).
fof(sos_44,axiom,
tptp4 != tptp2 ).
fof(sos_45,axiom,
tptp1 != tptp3 ).
fof(sos_46,axiom,
tptp1 != tptp2 ).
fof(sos_47,axiom,
tptp3 != tptp2 ).
fof(sos_48,axiom,
! [X108,X109] :
( ( occurrence_of(X109,tptp0)
& subactivity_occurrence(X108,X109)
& arboreal(X108)
& ~ leaf_occ(X108,X109) )
=> root_occ(X108,X109) ) ).
fof(sos_49,axiom,
! [X110,X111] :
( ( occurrence_of(X111,tptp0)
& subactivity_occurrence(X110,X111)
& arboreal(X110)
& ~ leaf_occ(X110,X111) )
=> root_occ(X110,X111) ) ).
fof(sos_50,axiom,
! [X112,X113] :
( ( occurrence_of(X113,tptp0)
& subactivity_occurrence(X112,X113)
& arboreal(X112)
& ~ leaf_occ(X112,X113) )
=> ? [X114] :
( occurrence_of(X114,tptp1)
& next_subocc(X112,X114,tptp0) ) ) ).
fof(goals,conjecture,
~ ? [X115] : occurrence_of(X115,tptp0) ).
%------------------------------------------------------------------------------