TPTP Problem File: PLA054^4.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : PLA054^4 : TPTP v9.0.0. Released v8.1.0.
% Domain : Planning
% Problem : Abductive planning: Safe problem
% Version : [BP13] axioms.
% English :
% Refs : [Sto98] Stone (1998), Abductive Planning with Sensing
% : [RO12] Raths & Otten (2012), The QMLTP Problem Library for Fi
% : [BP13] Benzmueller & Paulson (2013), Quantified Multimodal Lo
% : [Ste22] Steen (2022), An Extensible Logic Embedding Tool for L
% Source : [TPTP]
% Names : APM005+1 [QMLTP]
% Status : Theorem
% Rating : 0.12 v9.0.0, 0.10 v8.2.0, 0.23 v8.1.0
% Syntax : Number of formulae : 38 ( 11 unt; 20 typ; 10 def)
% Number of atoms : 82 ( 10 equ; 0 cnn)
% Maximal formula atoms : 25 ( 4 avg)
% Number of connectives : 110 ( 1 ~; 1 |; 3 &; 101 @)
% ( 1 <=>; 3 =>; 0 <=; 0 <~>)
% Maximal formula depth : 19 ( 5 avg)
% Number of types : 3 ( 1 usr)
% Number of type conns : 66 ( 66 >; 0 *; 0 +; 0 <<)
% Number of symbols : 20 ( 19 usr; 4 con; 0-3 aty)
% Number of variables : 38 ( 30 ^; 6 !; 2 ?; 38 :)
% SPC : TH0_THM_EQU_NAR
% Comments : This output was generated by embedproblem, version 1.7.1 (library
% version 1.3). Generated on Thu Apr 28 13:18:18 EDT 2022 using
% 'modal' embedding, version 1.5.2. Logic specification used:
% $modal == [$constants == $rigid,$quantification == $constant,
% $modalities == $modal_system_S4].
%------------------------------------------------------------------------------
thf(mworld,type,
mworld: $tType ).
thf(mrel_type,type,
mrel: mworld > mworld > $o ).
thf(mactual_type,type,
mactual: mworld ).
thf(mlocal_type,type,
mlocal: ( mworld > $o ) > $o ).
thf(mlocal_def,definition,
( mlocal
= ( ^ [Phi: mworld > $o] : ( Phi @ mactual ) ) ) ).
thf(mnot_type,type,
mnot: ( mworld > $o ) > mworld > $o ).
thf(mand_type,type,
mand: ( mworld > $o ) > ( mworld > $o ) > mworld > $o ).
thf(mor_type,type,
mor: ( mworld > $o ) > ( mworld > $o ) > mworld > $o ).
thf(mimplies_type,type,
mimplies: ( mworld > $o ) > ( mworld > $o ) > mworld > $o ).
thf(mequiv_type,type,
mequiv: ( mworld > $o ) > ( mworld > $o ) > mworld > $o ).
thf(mnot_def,definition,
( mnot
= ( ^ [A: mworld > $o,W: mworld] :
~ ( A @ W ) ) ) ).
thf(mand_def,definition,
( mand
= ( ^ [A: mworld > $o,B: mworld > $o,W: mworld] :
( ( A @ W )
& ( B @ W ) ) ) ) ).
thf(mor_def,definition,
( mor
= ( ^ [A: mworld > $o,B: mworld > $o,W: mworld] :
( ( A @ W )
| ( B @ W ) ) ) ) ).
thf(mimplies_def,definition,
( mimplies
= ( ^ [A: mworld > $o,B: mworld > $o,W: mworld] :
( ( A @ W )
=> ( B @ W ) ) ) ) ).
thf(mequiv_def,definition,
( mequiv
= ( ^ [A: mworld > $o,B: mworld > $o,W: mworld] :
( ( A @ W )
<=> ( B @ W ) ) ) ) ).
thf(mbox_type,type,
mbox: ( mworld > $o ) > mworld > $o ).
thf(mbox_def,definition,
( mbox
= ( ^ [Phi: mworld > $o,W: mworld] :
! [V: mworld] :
( ( mrel @ W @ V )
=> ( Phi @ V ) ) ) ) ).
thf(mdia_type,type,
mdia: ( mworld > $o ) > mworld > $o ).
thf(mdia_def,definition,
( mdia
= ( ^ [Phi: mworld > $o,W: mworld] :
? [V: mworld] :
( ( mrel @ W @ V )
& ( Phi @ V ) ) ) ) ).
thf(mrel_reflexive,axiom,
! [W: mworld] : ( mrel @ W @ W ) ).
thf(mrel_transitive,axiom,
! [W: mworld,V: mworld,U: mworld] :
( ( ( mrel @ W @ V )
& ( mrel @ V @ U ) )
=> ( mrel @ W @ U ) ) ).
thf(mforall_di_type,type,
mforall_di: ( $i > mworld > $o ) > mworld > $o ).
thf(mforall_di_def,definition,
( mforall_di
= ( ^ [A: $i > mworld > $o,W: mworld] :
! [X: $i] : ( A @ X @ W ) ) ) ).
thf(mexists_di_type,type,
mexists_di: ( $i > mworld > $o ) > mworld > $o ).
thf(mexists_di_def,definition,
( mexists_di
= ( ^ [A: $i > mworld > $o,W: mworld] :
? [X: $i] : ( A @ X @ W ) ) ) ).
thf(d_decl,type,
d: $i ).
thf(n_decl,type,
n: $i ).
thf(o_decl,type,
o: $i ).
thf(h_decl,type,
h: $i > mworld > $o ).
thf(closed_decl,type,
closed: $i > mworld > $o ).
thf(combo_decl,type,
combo: $i > $i > mworld > $o ).
thf(open_decl,type,
open: $i > mworld > $o ).
thf(ax1,axiom,
( mlocal
@ ( mbox
@ ( mforall_di
@ ^ [S: $i] :
( mforall_di
@ ^ [V: $i] :
( mexists_di
@ ^ [O: $i] : ( mand @ ( mbox @ ( mimplies @ ( mand @ ( closed @ S ) @ ( mand @ ( combo @ S @ V ) @ ( h @ O ) ) ) @ ( mbox @ ( open @ S ) ) ) ) @ ( mbox @ ( mimplies @ ( mand @ ( closed @ S ) @ ( mand @ ( mnot @ ( combo @ S @ V ) ) @ ( h @ o ) ) ) @ ( mbox @ ( closed @ S ) ) ) ) ) ) ) ) ) ) ).
thf(ax2,axiom,
mlocal @ ( mbox @ ( closed @ d ) ) ).
thf(ax3,axiom,
mlocal @ ( mbox @ ( mor @ ( combo @ d @ n ) @ ( mnot @ ( combo @ d @ n ) ) ) ) ).
thf(ax4,axiom,
( mlocal
@ ( mbox
@ ( mforall_di
@ ^ [S: $i] : ( mnot @ ( mand @ ( open @ S ) @ ( closed @ S ) ) ) ) ) ) ).
thf(ax5,axiom,
( mlocal
@ ( mexists_di
@ ^ [V: $i] : ( mbox @ ( combo @ d @ V ) ) ) ) ).
thf(con,conjecture,
( mlocal
@ ( mbox
@ ( mexists_di
@ ^ [V: $i] :
( mexists_di
@ ^ [O: $i] : ( mimplies @ ( mbox @ ( mand @ ( combo @ d @ V ) @ ( h @ O ) ) ) @ ( mbox @ ( open @ d ) ) ) ) ) ) ) ).
%------------------------------------------------------------------------------