TPTP Problem File: PLA033^7.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : PLA033^7 : TPTP v9.0.0. Released v5.5.0.
% Domain : Planning
% Problem : Abductive planning: Safe problem
% Version : [Ben12] axioms.
% English :
% Refs : [Sto00] Stone (2000), Towards a Computational Account of Knowl
% : [Ben12] Benzmueller (2012), Email to Geoff Sutcliffe
% Source : [Ben12]
% Names : s4-cumul-APM005+1 [Ben12]
% Status : Theorem
% Rating : 0.12 v9.0.0, 0.20 v8.2.0, 0.31 v8.1.0, 0.27 v7.5.0, 0.29 v7.4.0, 0.56 v7.2.0, 0.50 v7.1.0, 0.62 v7.0.0, 0.57 v6.4.0, 0.50 v6.3.0, 0.60 v6.2.0, 0.71 v5.5.0
% Syntax : Number of formulae : 88 ( 36 unt; 43 typ; 32 def)
% Number of atoms : 165 ( 36 equ; 0 cnn)
% Maximal formula atoms : 25 ( 3 avg)
% Number of connectives : 225 ( 5 ~; 5 |; 9 &; 196 @)
% ( 0 <=>; 10 =>; 0 <=; 0 <~>)
% Maximal formula depth : 19 ( 3 avg)
% Number of types : 3 ( 1 usr)
% Number of type conns : 189 ( 189 >; 0 *; 0 +; 0 <<)
% Number of symbols : 53 ( 51 usr; 13 con; 0-3 aty)
% Number of variables : 100 ( 56 ^; 37 !; 7 ?; 100 :)
% SPC : TH0_THM_EQU_NAR
% Comments :
%------------------------------------------------------------------------------
%----Include axioms for Modal logic S4 under cumulative domains
include('Axioms/LCL015^0.ax').
include('Axioms/LCL013^5.ax').
include('Axioms/LCL015^1.ax').
%------------------------------------------------------------------------------
thf(closed_type,type,
closed: mu > $i > $o ).
thf(open_type,type,
open: mu > $i > $o ).
thf(h_type,type,
h: mu > $i > $o ).
thf(combo_type,type,
combo: mu > mu > $i > $o ).
thf(o_type,type,
o: mu ).
thf(existence_of_o_ax,axiom,
! [V: $i] : ( exists_in_world @ o @ V ) ).
thf(n_type,type,
n: mu ).
thf(existence_of_n_ax,axiom,
! [V: $i] : ( exists_in_world @ n @ V ) ).
thf(d_type,type,
d: mu ).
thf(existence_of_d_ax,axiom,
! [V: $i] : ( exists_in_world @ d @ V ) ).
thf(ax1,axiom,
( mvalid
@ ( mbox_s4
@ ( mforall_ind
@ ^ [S: mu] :
( mforall_ind
@ ^ [V: mu] :
( mexists_ind
@ ^ [O: mu] : ( mand @ ( mbox_s4 @ ( mimplies @ ( mand @ ( closed @ S ) @ ( mand @ ( combo @ S @ V ) @ ( h @ O ) ) ) @ ( mbox_s4 @ ( open @ S ) ) ) ) @ ( mbox_s4 @ ( mimplies @ ( mand @ ( closed @ S ) @ ( mand @ ( mnot @ ( combo @ S @ V ) ) @ ( h @ o ) ) ) @ ( mbox_s4 @ ( closed @ S ) ) ) ) ) ) ) ) ) ) ).
thf(ax2,axiom,
mvalid @ ( mbox_s4 @ ( closed @ d ) ) ).
thf(ax3,axiom,
mvalid @ ( mbox_s4 @ ( mor @ ( combo @ d @ n ) @ ( mnot @ ( combo @ d @ n ) ) ) ) ).
thf(ax4,axiom,
( mvalid
@ ( mbox_s4
@ ( mforall_ind
@ ^ [S: mu] : ( mnot @ ( mand @ ( open @ S ) @ ( closed @ S ) ) ) ) ) ) ).
thf(ax5,axiom,
( mvalid
@ ( mexists_ind
@ ^ [V: mu] : ( mbox_s4 @ ( combo @ d @ V ) ) ) ) ).
thf(con,conjecture,
( mvalid
@ ( mbox_s4
@ ( mexists_ind
@ ^ [V: mu] :
( mexists_ind
@ ^ [O: mu] : ( mimplies @ ( mbox_s4 @ ( mand @ ( combo @ d @ V ) @ ( h @ O ) ) ) @ ( mbox_s4 @ ( open @ d ) ) ) ) ) ) ) ).
%------------------------------------------------------------------------------