TPTP Problem File: PLA026+1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : PLA026+1 : TPTP v9.0.0. Bugfixed v2.5.0.
% Domain : Planning
% Problem : Blocks 3/2/1, 5/4 => 5/3, 1, 4/2
% Version : [Bau99] axioms.
% English :
% Refs : [Bau99] Baumgartner (1999), FTP'2000 - Problem Sets
% [KS96] Kautz & Selman (1996), Pushing the Envelope: Planning,
% [KS92] Kautz & Selman (1992), Planning as Satisfiability
% Source : [Bau99]
% Names : medium [Bau99]
% Status : CounterSatisfiable
% Rating : 0.40 v9.0.0, 0.00 v7.4.0, 0.33 v7.3.0, 0.00 v7.0.0, 0.33 v6.4.0, 0.00 v6.2.0, 0.22 v6.1.0, 0.20 v6.0.0, 0.00 v5.5.0, 0.29 v5.4.0, 0.40 v5.3.0, 0.31 v5.2.0, 0.38 v5.0.0, 0.22 v4.1.0, 0.17 v4.0.1, 0.00 v3.4.0, 0.75 v3.3.0, 0.33 v3.1.0, 0.67 v2.5.0
% Syntax : Number of formulae : 69 ( 40 unt; 0 def)
% Number of atoms : 191 ( 0 equ)
% Maximal formula atoms : 9 ( 2 avg)
% Number of connectives : 147 ( 25 ~; 15 |; 50 &)
% ( 0 <=>; 57 =>; 0 <=; 0 <~>)
% Maximal formula depth : 10 ( 4 avg)
% Maximal term depth : 5 ( 1 avg)
% Number of predicates : 12 ( 12 usr; 0 prp; 1-3 aty)
% Number of functors : 8 ( 8 usr; 7 con; 0-1 aty)
% Number of variables : 70 ( 70 !; 0 ?)
% SPC : FOF_CSA_RFO_NEQ
% Comments :
% Bugfixes : v2.5.0 - Combined multiple conjecture formulae.
%--------------------------------------------------------------------------
%----Include blocks world axioms
include('Axioms/PLA002+0.ax').
%--------------------------------------------------------------------------
fof(different_not_equal,hypothesis,
! [Y,X] :
( ( different(X,Y)
| different(Y,X) )
=> neq(X,Y) ) ).
fof(block_1_not_block_2,hypothesis,
different(block_1,block_2) ).
fof(block_1_not_block_3,hypothesis,
different(block_1,block_3) ).
fof(block_1_not_block_4,hypothesis,
different(block_1,block_4) ).
fof(block_1_not_block_5,hypothesis,
different(block_1,block_5) ).
fof(block_2_not_block_3,hypothesis,
different(block_2,block_3) ).
fof(block_2_not_block_4,hypothesis,
different(block_2,block_4) ).
fof(block_2_not_block_5,hypothesis,
different(block_2,block_5) ).
fof(block_3_not_block_4,hypothesis,
different(block_3,block_4) ).
fof(block_3_not_block_5,hypothesis,
different(block_3,block_5) ).
fof(block_4_not_block_5,hypothesis,
different(block_4,block_5) ).
fof(block_1_not_table,hypothesis,
different(block_1,table) ).
fof(block_2_not_table,hypothesis,
different(block_2,table) ).
fof(block_3_not_table,hypothesis,
different(block_3,table) ).
fof(block_4_not_table,hypothesis,
different(block_4,table) ).
fof(block_5_not_table,hypothesis,
different(block_5,table) ).
fof(block_1,hypothesis,
a_block(block_1) ).
fof(block_2,hypothesis,
a_block(block_2) ).
fof(block_3,hypothesis,
a_block(block_3) ).
fof(block_4,hypothesis,
a_block(block_4) ).
fof(block_5,hypothesis,
a_block(block_5) ).
fof(table,hypothesis,
a_block(table) ).
fof(fixed_table,hypothesis,
fixed(table) ).
fof(nonfixed_block_1,hypothesis,
nonfixed(block_1) ).
fof(nonfixed_block_2,hypothesis,
nonfixed(block_2) ).
fof(nonfixed_block_3,hypothesis,
nonfixed(block_3) ).
fof(nonfixed_block_4,hypothesis,
nonfixed(block_4) ).
fof(nonfixed_block_5,hypothesis,
nonfixed(block_5) ).
%----Give here a list 0..N of timepoints in order to generate the states
%----of time N.
fof(time_0,hypothesis,
time(time_0) ).
fof(time_1,hypothesis,
time(s(time_0)) ).
fof(time_2,hypothesis,
time(s(s(time_0))) ).
fof(time_3,hypothesis,
time(s(s(s(time_0)))) ).
fof(time_4,hypothesis,
time(s(s(s(s(time_0))))) ).
%----At any time, have some source, destination and object
fof(some_source,hypothesis,
! [I] :
( time(I)
=> ( source(block_1,I)
| source(block_2,I)
| source(block_3,I)
| source(block_4,I)
| source(block_5,I)
| source(table,I) ) ) ).
fof(some_destination,hypothesis,
! [I] :
( time(I)
=> ( destination(block_1,I)
| destination(block_2,I)
| destination(block_3,I)
| destination(block_4,I)
| destination(block_5,I)
| destination(table,I) ) ) ).
fof(some_object,hypothesis,
! [I] :
( time(I)
=> ( object(block_1,I)
| object(block_2,I)
| object(block_3,I)
| object(block_4,I)
| object(block_5,I) ) ) ).
%----Initial state
fof(initial_3_on_2,hypothesis,
on(block_3,block_2,time_0) ).
fof(initial_clear_3,hypothesis,
clear(block_3,time_0) ).
fof(initial_2_on_1,hypothesis,
on(block_2,block_1,time_0) ).
fof(initial_1_on_table,hypothesis,
on(block_1,table,time_0) ).
fof(initial_5_on_4,hypothesis,
on(block_5,block_4,time_0) ).
fof(initial_clear_5,hypothesis,
clear(block_5,time_0) ).
fof(initial_4_on_table,hypothesis,
on(block_4,table,time_0) ).
%----Final state
fof(goal_time_4,hypothesis,
goal_time(s(s(s(s(time_0))))) ).
fof(goal_state,conjecture,
! [S] :
( goal_time(S)
=> ( on(block_5,block_3,S)
& clear(block_5,S)
& on(block_3,table,S)
& on(block_1,table,S)
& clear(block_1,S)
& on(block_4,block_2,S)
& clear(block_4,S)
& on(block_2,table,S) ) ) ).
%--------------------------------------------------------------------------