TPTP Problem File: PLA017-10.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : PLA017-10 : TPTP v9.0.0. Released v7.3.0.
% Domain : Puzzles
% Problem : Block A on C
% Version : Especial.
% English :
% Refs : [CS18] Claessen & Smallbone (2018), Efficient Encodings of Fi
% : [Sma18] Smallbone (2018), Email to Geoff Sutcliffe
% Source : [Sma18]
% Names :
% Status : Unsatisfiable
% Rating : 0.41 v8.2.0, 0.38 v8.1.0, 0.30 v7.5.0, 0.50 v7.4.0, 0.48 v7.3.0
% Syntax : Number of clauses : 32 ( 32 unt; 0 nHn; 19 RR)
% Number of literals : 32 ( 32 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 7 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 18 ( 18 usr; 8 con; 0-4 aty)
% Number of variables : 40 ( 6 sgn)
% SPC : CNF_UNS_RFO_PEQ_UEQ
% Comments : Converted from PLA017-1 to UEQ using [CS18].
%------------------------------------------------------------------------------
cnf(ifeq_axiom,axiom,
ifeq(A,A,B,C) = B ).
cnf(and_definition,axiom,
ifeq(holds(Y,State),true,ifeq(holds(X,State),true,holds(and(X,Y),State),true),true) = true ).
cnf(pickup_1,axiom,
ifeq(differ(X,table),true,ifeq(holds(empty,State),true,ifeq(holds(clear(X),State),true,holds(holding(X),do(pickup(X),State)),true),true),true) = true ).
cnf(pickup_2,axiom,
ifeq(holds(on(X,Y),State),true,ifeq(holds(empty,State),true,ifeq(holds(clear(X),State),true,holds(clear(Y),do(pickup(X),State)),true),true),true) = true ).
cnf(pickup_3,axiom,
ifeq(differ(X,Z),true,ifeq(holds(on(X,Y),State),true,holds(on(X,Y),do(pickup(Z),State)),true),true) = true ).
cnf(pickup_4,axiom,
ifeq(differ(X,Z),true,ifeq(holds(clear(X),State),true,holds(clear(X),do(pickup(Z),State)),true),true) = true ).
cnf(putdown_1,axiom,
ifeq(holds(holding(X),State),true,ifeq(holds(clear(Y),State),true,holds(empty,do(putdown(X,Y),State)),true),true) = true ).
cnf(putdown_2,axiom,
ifeq(holds(holding(X),State),true,ifeq(holds(clear(Y),State),true,holds(on(X,Y),do(putdown(X,Y),State)),true),true) = true ).
cnf(putdown_3,axiom,
ifeq(holds(holding(X),State),true,ifeq(holds(clear(Y),State),true,holds(clear(X),do(putdown(X,Y),State)),true),true) = true ).
cnf(putdown_4,axiom,
ifeq(holds(on(X,Y),State),true,holds(on(X,Y),do(putdown(Z,W),State)),true) = true ).
cnf(putdown_5,axiom,
ifeq(differ(Z,Y),true,ifeq(holds(clear(Z),State),true,holds(clear(Z),do(putdown(X,Y),State)),true),true) = true ).
cnf(symmetry_of_differ,axiom,
ifeq(differ(Y,X),true,differ(X,Y),true) = true ).
cnf(differ_a_b,axiom,
differ(a,b) = true ).
cnf(differ_a_c,axiom,
differ(a,c) = true ).
cnf(differ_a_d,axiom,
differ(a,d) = true ).
cnf(differ_a_table,axiom,
differ(a,table) = true ).
cnf(differ_b_c,axiom,
differ(b,c) = true ).
cnf(differ_b_d,axiom,
differ(b,d) = true ).
cnf(differ_b_table,axiom,
differ(b,table) = true ).
cnf(differ_c_d,axiom,
differ(c,d) = true ).
cnf(differ_c_table,axiom,
differ(c,table) = true ).
cnf(differ_d_table,axiom,
differ(d,table) = true ).
cnf(initial_state1,axiom,
holds(on(a,table),s0) = true ).
cnf(initial_state2,axiom,
holds(on(b,table),s0) = true ).
cnf(initial_state3,axiom,
holds(on(c,d),s0) = true ).
cnf(initial_state4,axiom,
holds(on(d,table),s0) = true ).
cnf(initial_state5,axiom,
holds(clear(a),s0) = true ).
cnf(initial_state6,axiom,
holds(clear(b),s0) = true ).
cnf(initial_state7,axiom,
holds(clear(c),s0) = true ).
cnf(initial_state8,axiom,
holds(empty,s0) = true ).
cnf(clear_table,axiom,
holds(clear(table),State) = true ).
cnf(prove_AC,negated_conjecture,
holds(on(a,c),State) != true ).
%------------------------------------------------------------------------------