TPTP Problem File: PHI043^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : PHI043^1 : TPTP v9.0.0. Released v7.5.0.
% Domain : Philosophy
% Problem : Patch to the Possibility Part of Goedel's Ontological Proof
% Version : [Gus20] axioms.
% English :
% Refs : [Gus20] Gustafsson (2020), Email to Geoff Sutcliffe
% : [Gus20] Gustafsson (2020), A Patch to the Possibility Part of
% Source : [Gus20]
% Names :
% Status : Theorem
% Rating : 0.25 v9.0.0, 0.30 v8.2.0, 0.31 v8.1.0, 0.27 v7.5.0
% Syntax : Number of formulae : 50 ( 22 unt; 25 typ; 22 def)
% Number of atoms : 71 ( 24 equ; 0 cnn)
% Maximal formula atoms : 10 ( 2 avg)
% Number of connectives : 79 ( 6 ~; 3 |; 4 &; 63 @)
% ( 1 <=>; 2 =>; 0 <=; 0 <~>)
% Maximal formula depth : 14 ( 2 avg)
% Number of types : 3 ( 1 usr)
% Number of type conns : 147 ( 147 >; 0 *; 0 +; 0 <<)
% Number of symbols : 36 ( 33 usr; 11 con; 0-3 aty)
% Number of variables : 62 ( 52 ^; 6 !; 4 ?; 62 :)
% SPC : TH0_THM_EQU_NAR
% Comments : Constant domain version
%------------------------------------------------------------------------------
%----Axioms for Quantified Modal Logic KB.
include('Axioms/LCL016^0.ax').
%------------------------------------------------------------------------------
%----Positvity
thf(p_type,type,
p: ( mu > $i > $o ) > $i > $o ).
%----Self-difference is not positive.
thf(ax16,axiom,
( mvalid
@ ( mnot
@ ( p
@ ^ [X: mu,W: $i] : ( X != X ) ) ) ) ).
%----Equivalent properties are alike in positivity
thf(ax17,axiom,
( mvalid
@ ( mforall_indset
@ ^ [Phi: mu > $i > $o] :
( mforall_indset
@ ^ [Psi: mu > $i > $o] :
( mimplies
@ ( mbox
@ ( mforall_ind
@ ^ [X: mu] : ( mequiv @ ( Phi @ X ) @ ( Psi @ X ) ) ) )
@ ( mequiv @ ( p @ Phi ) @ ( p @ Psi ) ) ) ) ) ) ).
%----The Possible Instantiation of the Positive
thf(possible_instantiation_of_the_positive,conjecture,
( mvalid
@ ( mforall_indset
@ ^ [Phi: mu > $i > $o] :
( mimplies @ ( p @ Phi )
@ ( mdia
@ ( mexists_ind
@ ^ [X: mu] : ( Phi @ X ) ) ) ) ) ) ).
%------------------------------------------------------------------------------