TPTP Problem File: PHI007^5.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : PHI007^5 : TPTP v9.0.0. Released v6.4.0.
% Domain : Philosophy
% Problem : Inconsistency of the axioms in Goedel's original manuscript
% Version : [Ben16] axioms : Biased > Reduced > Biased.
% English : Scott's variant without the conjunct in the definition of essence.
% Refs : [Ben16] Benzmueller (2016), Email to Geoff Sutcliffe
% Source : [Ben16]
% Names : Sledgehammer_Inconsistency_S5U_direct_satallax.p [Ben16]
% Status : ContradictoryAxioms
% Rating : 0.38 v9.0.0, 0.40 v8.2.0, 0.69 v8.1.0, 0.73 v7.5.0, 0.57 v7.4.0, 0.67 v7.2.0, 0.62 v7.1.0, 0.75 v7.0.0, 0.71 v6.4.0
% Syntax : Number of formulae : 17 ( 4 unt; 7 typ; 0 def)
% Number of atoms : 25 ( 3 equ; 0 cnn)
% Maximal formula atoms : 3 ( 2 avg)
% Number of connectives : 69 ( 4 ~; 0 |; 1 &; 51 @)
% ( 0 <=>; 13 =>; 0 <=; 0 <~>)
% Maximal formula depth : 12 ( 5 avg)
% Number of types : 3 ( 2 usr)
% Number of type conns : 33 ( 33 >; 0 *; 0 +; 0 <<)
% Number of symbols : 7 ( 5 usr; 1 con; 0-3 aty)
% Number of variables : 32 ( 11 ^; 20 !; 1 ?; 32 :)
% SPC : TH0_CAX_EQU_NAR
% Comments : This problem file has been generated by Sledgehammer (satallax
% translation) in default setting.
% : The $false conjecture makes this correspond to the Isabelle
% sources. Otherwise it could be omitted and the status would be
% Unsatisfiable.
%------------------------------------------------------------------------------
%----Could-be-implicit typings (2)
thf(ty_n_t__QML____S5__O__092__060mu__062,type,
qML_mu: $tType ).
thf(ty_n_t__QML____S5__Oi,type,
qML_i: $tType ).
%----Explicit typings (5)
thf(sy_c_Inconsistency__S5_OG,type,
inconsistency_G: qML_mu > qML_i > $o ).
thf(sy_c_Inconsistency__S5_ONE_001t__QML____S5__O__092__060mu__062,type,
incons1905966852QML_mu: qML_mu > qML_i > $o ).
thf(sy_c_Inconsistency__S5_OP,type,
inconsistency_P: ( qML_mu > qML_i > $o ) > qML_i > $o ).
thf(sy_c_Inconsistency__S5_Oess_001t__QML____S5__O__092__060mu__062,type,
incons1389517216QML_mu: ( qML_mu > qML_i > $o ) > qML_mu > qML_i > $o ).
thf(sy_c_QML__S5_Or,type,
qML_r: qML_i > qML_i > $o ).
%----Relevant facts (9)
thf(fact_0_A1a,axiom,
! [W: qML_i,X: qML_mu > qML_i > $o] :
( ( inconsistency_P
@ ^ [Y: qML_mu,Z: qML_i] :
~ ( X @ Y @ Z )
@ W )
=> ~ ( inconsistency_P @ X @ W ) ) ).
% A1a
thf(fact_1_A1b,axiom,
! [W: qML_i,X: qML_mu > qML_i > $o] :
( ~ ( inconsistency_P @ X @ W )
=> ( inconsistency_P
@ ^ [Y: qML_mu,Z: qML_i] :
~ ( X @ Y @ Z )
@ W ) ) ).
% A1b
thf(fact_2_A2,axiom,
! [W: qML_i,X: qML_mu > qML_i > $o,Xa: qML_mu > qML_i > $o] :
( ( ( inconsistency_P @ X @ W )
& ! [V: qML_i] :
( ( qML_r @ W @ V )
=> ! [Xb: qML_mu] :
( ( X @ Xb @ V )
=> ( Xa @ Xb @ V ) ) ) )
=> ( inconsistency_P @ Xa @ W ) ) ).
% A2
thf(fact_3_A3,axiom,
! [X_1: qML_i] : ( inconsistency_P @ inconsistency_G @ X_1 ) ).
% A3
thf(fact_4_A4,axiom,
! [W: qML_i,X: qML_mu > qML_i > $o] :
( ( inconsistency_P @ X @ W )
=> ! [V2: qML_i] :
( ( qML_r @ W @ V2 )
=> ( inconsistency_P @ X @ V2 ) ) ) ).
% A4
thf(fact_5_A5,axiom,
! [X_1: qML_i] : ( inconsistency_P @ incons1905966852QML_mu @ X_1 ) ).
% A5
thf(fact_6_G__def,axiom,
( inconsistency_G
= ( ^ [X2: qML_mu,W2: qML_i] :
! [Y: qML_mu > qML_i > $o] :
( ( inconsistency_P @ Y @ W2 )
=> ( Y @ X2 @ W2 ) ) ) ) ).
% G_def
thf(fact_7_NE__def,axiom,
( incons1905966852QML_mu
= ( ^ [X2: qML_mu,W2: qML_i] :
! [Y: qML_mu > qML_i > $o] :
( ( incons1389517216QML_mu @ Y @ X2 @ W2 )
=> ! [V3: qML_i] :
( ( qML_r @ W2 @ V3 )
=> ? [Z: qML_mu] : ( Y @ Z @ V3 ) ) ) ) ) ).
% NE_def
thf(fact_8_ess__def,axiom,
( incons1389517216QML_mu
= ( ^ [Phi: qML_mu > qML_i > $o,X2: qML_mu,W2: qML_i] :
! [Y: qML_mu > qML_i > $o] :
( ( Y @ X2 @ W2 )
=> ! [V3: qML_i] :
( ( qML_r @ W2 @ V3 )
=> ! [Z: qML_mu] :
( ( Phi @ Z @ V3 )
=> ( Y @ Z @ V3 ) ) ) ) ) ) ).
% ess_def
%----Conjectures (1)
thf(conj_0,conjecture,
$false ).