TPTP Problem File: PHI007^4.p

View Solutions - Solve Problem

%------------------------------------------------------------------------------
% File     : PHI007^4 : TPTP v9.0.0. Released v6.4.0.
% Domain   : Philosophy
% Problem  : Inconsistency of the axioms in Goedel's original manuscript
% Version  : [Ben16] axioms : Biased.
% English  : Scott's variant without the conjunct in the definition of essence.

% Refs     : [Ben16] Benzmueller (2016), Email to Geoff Sutcliffe
% Source   : [Ben16]
% Names    : Sledgehammer_Inconsistency_S5U_direct_satallax_fullaxioms.p [Ben16]

% Status   : Theorem
% Rating   : 0.75 v9.0.0, 0.80 v8.2.0, 0.85 v8.1.0, 0.82 v7.5.0, 0.71 v7.4.0, 0.67 v7.2.0, 0.62 v7.0.0, 0.71 v6.4.0
% Syntax   : Number of formulae    :   52 (  15 unt;  25 typ;   0 def)
%            Number of atoms       :   70 (  15 equ;   0 cnn)
%            Maximal formula atoms :    3 (   2 avg)
%            Number of connectives :  189 (   6   ~;   0   |;   9   &; 144   @)
%                                         (   0 <=>;  30  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   12 (   5 avg)
%            Number of types       :    7 (   6 usr)
%            Number of type conns  :   83 (  83   >;   0   *;   0   +;   0  <<)
%            Number of symbols     :   21 (  19 usr;   1 con; 0-3 aty)
%            Number of variables   :   83 (  25   ^;  52   !;   6   ?;  83   :)
% SPC      : TH0_THM_EQU_NAR

% Comments : This problem file has been generated by Sledgehammer (satallax
%            translation) in default setting.
%          : The $false conjecture makes this correspond to the Isabelle
%            sources. Otherwise it could be omitted and the status would be
%            Unsatisfiable.
%------------------------------------------------------------------------------
%----Could-be-implicit typings (6)
thf(ty_n_t__Set__Oset_It__Set__Oset_It__Set__Oset_It__Nat__Onat_J_J_J,type,
    set_set_set_nat: $tType ).

thf(ty_n_t__Set__Oset_It__Set__Oset_It__Nat__Onat_J_J,type,
    set_set_nat: $tType ).

thf(ty_n_t__QML____S5__O__092__060mu__062,type,
    qML_mu: $tType ).

thf(ty_n_t__Set__Oset_It__Nat__Onat_J,type,
    set_nat: $tType ).

thf(ty_n_t__QML____S5__Oi,type,
    qML_i: $tType ).

thf(ty_n_t__Nat__Onat,type,
    nat: $tType ).

%----Explicit typings (19)
thf(sy_c_Equiv__Relations_Opart__equivp_001t__Nat__Onat,type,
    equiv_2129914667vp_nat: ( nat > nat > $o ) > $o ).

thf(sy_c_Equiv__Relations_Opart__equivp_001t__Set__Oset_It__Nat__Onat_J,type,
    equiv_235907809et_nat: ( set_nat > set_nat > $o ) > $o ).

thf(sy_c_Inconsistency__S5_OG,type,
    inconsistency_G: qML_mu > qML_i > $o ).

thf(sy_c_Inconsistency__S5_ONE_001t__QML____S5__O__092__060mu__062,type,
    incons1905966852QML_mu: qML_mu > qML_i > $o ).

thf(sy_c_Inconsistency__S5_OP,type,
    inconsistency_P: ( qML_mu > qML_i > $o ) > qML_i > $o ).

thf(sy_c_Inconsistency__S5_Oess_001t__QML____S5__O__092__060mu__062,type,
    incons1389517216QML_mu: ( qML_mu > qML_i > $o ) > qML_mu > qML_i > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Nat__Onat_J,type,
    ord_less_eq_set_nat: set_nat > set_nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Set__Oset_It__Nat__Onat_J_J,type,
    ord_le1613022364et_nat: set_set_nat > set_set_nat > $o ).

thf(sy_c_QML__S5_Or,type,
    qML_r: qML_i > qML_i > $o ).

thf(sy_c_Rings_Odvd__class_Odvd_001t__Nat__Onat,type,
    dvd_dvd_nat: nat > nat > $o ).

thf(sy_c_Set_OBall_001t__Nat__Onat,type,
    ball_nat: set_nat > ( nat > $o ) > $o ).

thf(sy_c_Set_OBall_001t__Set__Oset_It__Nat__Onat_J,type,
    ball_set_nat: set_set_nat > ( set_nat > $o ) > $o ).

thf(sy_c_Set_OCollect_001t__Nat__Onat,type,
    collect_nat: ( nat > $o ) > set_nat ).

thf(sy_c_Set_OCollect_001t__Set__Oset_It__Nat__Onat_J,type,
    collect_set_nat: ( set_nat > $o ) > set_set_nat ).

thf(sy_c_Set_OCollect_001t__Set__Oset_It__Set__Oset_It__Nat__Onat_J_J,type,
    collect_set_set_nat: ( set_set_nat > $o ) > set_set_set_nat ).

thf(sy_c_Set__Interval_Oord_OgreaterThan_001t__Nat__Onat,type,
    set_greaterThan_nat: ( nat > nat > $o ) > nat > set_nat ).

thf(sy_c_member_001t__Nat__Onat,type,
    member_nat: nat > set_nat > $o ).

thf(sy_c_member_001t__Set__Oset_It__Nat__Onat_J,type,
    member_set_nat: set_nat > set_set_nat > $o ).

thf(sy_c_member_001t__Set__Oset_It__Set__Oset_It__Nat__Onat_J_J,type,
    member_set_set_nat: set_set_nat > set_set_set_nat > $o ).

%----Relevant facts (26)
thf(fact_0_A2,axiom,
    ! [W: qML_i,X: qML_mu > qML_i > $o,Xa: qML_mu > qML_i > $o] :
      ( ( ( inconsistency_P @ X @ W )
        & ! [V: qML_i] :
            ( ( qML_r @ W @ V )
           => ! [Xb: qML_mu] :
                ( ( X @ Xb @ V )
               => ( Xa @ Xb @ V ) ) ) )
     => ( inconsistency_P @ Xa @ W ) ) ).

% A2
thf(fact_1_A5,axiom,
    ! [X_1: qML_i] : ( inconsistency_P @ incons1905966852QML_mu @ X_1 ) ).

% A5
thf(fact_2_G__def,axiom,
    ( inconsistency_G
    = ( ^ [X2: qML_mu,W2: qML_i] :
        ! [Y: qML_mu > qML_i > $o] :
          ( ( inconsistency_P @ Y @ W2 )
         => ( Y @ X2 @ W2 ) ) ) ) ).

% G_def
thf(fact_3_A1a,axiom,
    ! [W: qML_i,X: qML_mu > qML_i > $o] :
      ( ( inconsistency_P
        @ ^ [Y: qML_mu,Z: qML_i] :
            ~ ( X @ Y @ Z )
        @ W )
     => ~ ( inconsistency_P @ X @ W ) ) ).

% A1a
thf(fact_4_A3,axiom,
    ! [X_1: qML_i] : ( inconsistency_P @ inconsistency_G @ X_1 ) ).

% A3
thf(fact_5_A1b,axiom,
    ! [W: qML_i,X: qML_mu > qML_i > $o] :
      ( ~ ( inconsistency_P @ X @ W )
     => ( inconsistency_P
        @ ^ [Y: qML_mu,Z: qML_i] :
            ~ ( X @ Y @ Z )
        @ W ) ) ).

% A1b
thf(fact_6_A4,axiom,
    ! [W: qML_i,X: qML_mu > qML_i > $o] :
      ( ( inconsistency_P @ X @ W )
     => ! [V2: qML_i] :
          ( ( qML_r @ W @ V2 )
         => ( inconsistency_P @ X @ V2 ) ) ) ).

% A4
thf(fact_7_QML__S5_Otrans,axiom,
    ! [X3: qML_i,Y2: qML_i,Z2: qML_i] :
      ( ( ( qML_r @ X3 @ Y2 )
        & ( qML_r @ Y2 @ Z2 ) )
     => ( qML_r @ X3 @ Z2 ) ) ).

% QML_S5.trans
thf(fact_8_QML__S5_Osym,axiom,
    ! [X3: qML_i,Y2: qML_i] :
      ( ( qML_r @ X3 @ Y2 )
     => ( qML_r @ Y2 @ X3 ) ) ).

% QML_S5.sym
thf(fact_9_ref,axiom,
    ! [X3: qML_i] : ( qML_r @ X3 @ X3 ) ).

% ref
thf(fact_10_NE__def,axiom,
    ( incons1905966852QML_mu
    = ( ^ [X2: qML_mu,W2: qML_i] :
        ! [Y: qML_mu > qML_i > $o] :
          ( ( incons1389517216QML_mu @ Y @ X2 @ W2 )
         => ! [V3: qML_i] :
              ( ( qML_r @ W2 @ V3 )
             => ? [Z: qML_mu] : ( Y @ Z @ V3 ) ) ) ) ) ).

% NE_def
thf(fact_11_ess__def,axiom,
    ( incons1389517216QML_mu
    = ( ^ [Phi: qML_mu > qML_i > $o,X2: qML_mu,W2: qML_i] :
        ! [Y: qML_mu > qML_i > $o] :
          ( ( Y @ X2 @ W2 )
         => ! [V3: qML_i] :
              ( ( qML_r @ W2 @ V3 )
             => ! [Z: qML_mu] :
                  ( ( Phi @ Z @ V3 )
                 => ( Y @ Z @ V3 ) ) ) ) ) ) ).

% ess_def
thf(fact_12_mem__Collect__eq,axiom,
    ! [A: set_nat,P: set_nat > $o] :
      ( ( member_set_nat @ A @ ( collect_set_nat @ P ) )
      = ( P @ A ) ) ).

% mem_Collect_eq
thf(fact_13_mem__Collect__eq,axiom,
    ! [A: nat,P: nat > $o] :
      ( ( member_nat @ A @ ( collect_nat @ P ) )
      = ( P @ A ) ) ).

% mem_Collect_eq
thf(fact_14_part__equivp__typedef,axiom,
    ! [R: set_nat > set_nat > $o] :
      ( ( equiv_235907809et_nat @ R )
     => ? [D: set_set_nat] :
          ( member_set_set_nat @ D
          @ ( collect_set_set_nat
            @ ^ [C: set_set_nat] :
              ? [X2: set_nat] :
                ( ( R @ X2 @ X2 )
                & ( C
                  = ( collect_set_nat @ ( R @ X2 ) ) ) ) ) ) ) ).

% part_equivp_typedef
thf(fact_15_part__equivp__typedef,axiom,
    ! [R: nat > nat > $o] :
      ( ( equiv_2129914667vp_nat @ R )
     => ? [D: set_nat] :
          ( member_set_nat @ D
          @ ( collect_set_nat
            @ ^ [C: set_nat] :
              ? [X2: nat] :
                ( ( R @ X2 @ X2 )
                & ( C
                  = ( collect_nat @ ( R @ X2 ) ) ) ) ) ) ) ).

% part_equivp_typedef
thf(fact_16_Ball__def__raw,axiom,
    ( ball_nat
    = ( ^ [A2: set_nat,P2: nat > $o] :
        ! [X2: nat] :
          ( ( member_nat @ X2 @ A2 )
         => ( P2 @ X2 ) ) ) ) ).

% Ball_def_raw
thf(fact_17_Ball__def__raw,axiom,
    ( ball_set_nat
    = ( ^ [A2: set_set_nat,P2: set_nat > $o] :
        ! [X2: set_nat] :
          ( ( member_set_nat @ X2 @ A2 )
         => ( P2 @ X2 ) ) ) ) ).

% Ball_def_raw
thf(fact_18_Ball__def,axiom,
    ( ball_nat
    = ( ^ [A2: set_nat,P2: nat > $o] :
        ! [X2: nat] :
          ( ( member_nat @ X2 @ A2 )
         => ( P2 @ X2 ) ) ) ) ).

% Ball_def
thf(fact_19_Ball__def,axiom,
    ( ball_set_nat
    = ( ^ [A2: set_set_nat,P2: set_nat > $o] :
        ! [X2: set_nat] :
          ( ( member_set_nat @ X2 @ A2 )
         => ( P2 @ X2 ) ) ) ) ).

% Ball_def
thf(fact_20_part__equivp__def,axiom,
    ( equiv_2129914667vp_nat
    = ( ^ [R2: nat > nat > $o] :
          ( ? [X2: nat] : ( R2 @ X2 @ X2 )
          & ! [X2: nat,Y: nat] :
              ( ( R2 @ X2 @ Y )
              = ( ( R2 @ X2 @ X2 )
                & ( R2 @ Y @ Y )
                & ( ( R2 @ X2 )
                  = ( R2 @ Y ) ) ) ) ) ) ) ).

% part_equivp_def
thf(fact_21_subsetI,axiom,
    ! [A3: set_nat,B: set_nat] :
      ( ! [X4: nat] :
          ( ( member_nat @ X4 @ A3 )
         => ( member_nat @ X4 @ B ) )
     => ( ord_less_eq_set_nat @ A3 @ B ) ) ).

% subsetI
thf(fact_22_subsetI,axiom,
    ! [A3: set_set_nat,B: set_set_nat] :
      ( ! [X4: set_nat] :
          ( ( member_set_nat @ X4 @ A3 )
         => ( member_set_nat @ X4 @ B ) )
     => ( ord_le1613022364et_nat @ A3 @ B ) ) ).

% subsetI
thf(fact_23_dvd_OgreaterThan__def,axiom,
    ! [L: nat] :
      ( ( set_greaterThan_nat
        @ ^ [N: nat,M: nat] :
            ( ( dvd_dvd_nat @ N @ M )
            & ~ ( dvd_dvd_nat @ M @ N ) )
        @ L )
      = ( collect_nat
        @ ^ [X2: nat] :
            ( ( dvd_dvd_nat @ L @ X2 )
            & ~ ( dvd_dvd_nat @ X2 @ L ) ) ) ) ).

% dvd.greaterThan_def
thf(fact_24_part__equivp__transp,axiom,
    ! [R: nat > nat > $o,X3: nat,Y2: nat,Z2: nat] :
      ( ( equiv_2129914667vp_nat @ R )
     => ( ( R @ X3 @ Y2 )
       => ( ( R @ Y2 @ Z2 )
         => ( R @ X3 @ Z2 ) ) ) ) ).

% part_equivp_transp
thf(fact_25_part__equivp__symp,axiom,
    ! [R: nat > nat > $o,X3: nat,Y2: nat] :
      ( ( equiv_2129914667vp_nat @ R )
     => ( ( R @ X3 @ Y2 )
       => ( R @ Y2 @ X3 ) ) ) ).

% part_equivp_symp

%----Conjectures (1)
thf(conj_0,conjecture,
    $false ).

%------------------------------------------------------------------------------