TPTP Problem File: PHI005^2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : PHI005^2 : TPTP v9.0.0. Released v6.1.0.
% Domain : Philosophy
% Problem : Necessarily, God exists
% Version : [Ben13] axioms : Reduced > Especial.
% English :
% Refs : [Ben13] Benzmueller (2013), Email to Geoff Sutcliffe
% Source : [Ben13]
% Names : T3 [Ben13]
% Status : Theorem
% Rating : 0.25 v9.0.0, 0.40 v8.2.0, 0.46 v8.1.0, 0.36 v7.5.0, 0.43 v7.4.0, 0.56 v7.2.0, 0.50 v7.1.0, 0.62 v7.0.0, 0.57 v6.4.0, 0.50 v6.3.0, 0.60 v6.2.0, 0.57 v6.1.0
% Syntax : Number of formulae : 59 ( 25 unt; 29 typ; 25 def)
% Number of atoms : 84 ( 26 equ; 0 cnn)
% Maximal formula atoms : 6 ( 2 avg)
% Number of connectives : 88 ( 5 ~; 3 |; 4 &; 72 @)
% ( 1 <=>; 3 =>; 0 <=; 0 <~>)
% Maximal formula depth : 7 ( 2 avg)
% Number of types : 3 ( 1 usr)
% Number of type conns : 159 ( 159 >; 0 *; 0 +; 0 <<)
% Number of symbols : 38 ( 35 usr; 9 con; 0-3 aty)
% Number of variables : 66 ( 54 ^; 8 !; 4 ?; 66 :)
% SPC : TH0_THM_EQU_NAR
% Comments :
%------------------------------------------------------------------------------
%----Axioms for Quantified Modal Logic KB.
include('Axioms/LCL016^0.ax').
include('Axioms/LCL016^1.ax').
%----Axioms about God
% include('Axioms/PHI001^0.ax').
%------------------------------------------------------------------------------
%----Signature
thf(positive_tp,type,
positive: ( mu > $i > $o ) > $i > $o ).
thf(god_tp,type,
god: mu > $i > $o ).
%----Constant symbol for essence: ess
thf(essence_tp,type,
essence: ( mu > $i > $o ) > mu > $i > $o ).
%----Constant symbol for necessary existence: ne
thf(necessary_existence_tp,type,
necessary_existence: mu > $i > $o ).
%----D1: A God-like being possesses all positive properties.
thf(defD1,definition,
( god
= ( ^ [X: mu] :
( mforall_indset
@ ^ [Phi: mu > $i > $o] : ( mimplies @ ( positive @ Phi ) @ ( Phi @ X ) ) ) ) ) ).
%----D3: Necessary existence of an entity is the exemplification of all its
%----essences.
thf(defD3,definition,
( necessary_existence
= ( ^ [X: mu] :
( mforall_indset
@ ^ [Phi: mu > $i > $o] :
( mimplies @ ( essence @ Phi @ X )
@ ( mbox
@ ( mexists_ind
@ ^ [Y: mu] : ( Phi @ Y ) ) ) ) ) ) ) ).
%----A5: Necessary existence is positive.
thf(axA5,axiom,
mvalid @ ( positive @ necessary_existence ) ).
%----C: Possibly, God exists.
thf(corC,lemma,
( mvalid
@ ( mdia
@ ( mexists_ind
@ ^ [X: mu] : ( god @ X ) ) ) ) ).
%----T2: Being God-like is an essence of any God-like being
thf(thmT2,lemma,
( mvalid
@ ( mforall_ind
@ ^ [X: mu] : ( mimplies @ ( god @ X ) @ ( essence @ god @ X ) ) ) ) ).
%----T3: Necessarily God exists.
thf(thmT3,conjecture,
( mvalid
@ ( mbox
@ ( mexists_ind
@ ^ [X: mu] : ( god @ X ) ) ) ) ).
%------------------------------------------------------------------------------