TPTP Problem File: PHI004^2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : PHI004^2 : TPTP v9.0.0. Released v6.1.0.
% Domain : Philosophy
% Problem : Being God-like is an essence of any God-like being
% Version : [Ben13] axioms : Reduced > Especial.
% English :
% Refs : [Ben13] Benzmueller (2013), Email to Geoff Sutcliffe
% Source : [Ben13]
% Names : T2 [Ben13]
% Status : Theorem
% Rating : 0.25 v9.0.0, 0.30 v8.2.0, 0.38 v8.1.0, 0.36 v7.5.0, 0.43 v7.4.0, 0.44 v7.2.0, 0.38 v7.1.0, 0.50 v7.0.0, 0.43 v6.4.0, 0.50 v6.3.0, 0.60 v6.2.0, 0.57 v6.1.0
% Syntax : Number of formulae : 54 ( 24 unt; 27 typ; 24 def)
% Number of atoms : 83 ( 25 equ; 0 cnn)
% Maximal formula atoms : 7 ( 3 avg)
% Number of connectives : 93 ( 5 ~; 3 |; 4 &; 78 @)
% ( 1 <=>; 2 =>; 0 <=; 0 <~>)
% Maximal formula depth : 10 ( 2 avg)
% Number of types : 3 ( 1 usr)
% Number of type conns : 158 ( 158 >; 0 *; 0 +; 0 <<)
% Number of symbols : 37 ( 34 usr; 10 con; 0-3 aty)
% Number of variables : 65 ( 55 ^; 6 !; 4 ?; 65 :)
% SPC : TH0_THM_EQU_NAR
% Comments :
%------------------------------------------------------------------------------
%----Axioms for Quantified Modal Logic K.
include('Axioms/LCL016^0.ax').
%----Axioms about God
% include('Axioms/PHI001^0.ax').
%------------------------------------------------------------------------------
%----Signature
thf(positive_tp,type,
positive: ( mu > $i > $o ) > $i > $o ).
thf(god_tp,type,
god: mu > $i > $o ).
%----Constant symbol for essence: ess
thf(essence_tp,type,
essence: ( mu > $i > $o ) > mu > $i > $o ).
%----A1: Either the property or its negation are positive, but not both.
%----(Remark: only the left to right is needed for proving T1)
thf(axA1,axiom,
( mvalid
@ ( mforall_indset
@ ^ [Phi: mu > $i > $o] :
( mequiv
@ ( positive
@ ^ [X: mu] : ( mnot @ ( Phi @ X ) ) )
@ ( mnot @ ( positive @ Phi ) ) ) ) ) ).
%----D1: A God-like being possesses all positive properties.
thf(defD1,definition,
( god
= ( ^ [X: mu] :
( mforall_indset
@ ^ [Phi: mu > $i > $o] : ( mimplies @ ( positive @ Phi ) @ ( Phi @ X ) ) ) ) ) ).
%----A4: Positive properties are necessary positive properties.
thf(axA4,axiom,
( mvalid
@ ( mforall_indset
@ ^ [Phi: mu > $i > $o] : ( mimplies @ ( positive @ Phi ) @ ( mbox @ ( positive @ Phi ) ) ) ) ) ).
%----D2: An essence of an individual is a property possessed by it and
%----necessarily implying any of its properties.
thf(defD2,definition,
( essence
= ( ^ [Phi: mu > $i > $o,X: mu] :
( mand @ ( Phi @ X )
@ ( mforall_indset
@ ^ [Psi: mu > $i > $o] :
( mimplies @ ( Psi @ X )
@ ( mbox
@ ( mforall_ind
@ ^ [Y: mu] : ( mimplies @ ( Phi @ Y ) @ ( Psi @ Y ) ) ) ) ) ) ) ) ) ).
%----T2: Being God-like is an essence of any God-like being
thf(thmT2,conjecture,
( mvalid
@ ( mforall_ind
@ ^ [X: mu] : ( mimplies @ ( god @ X ) @ ( essence @ god @ X ) ) ) ) ).
%------------------------------------------------------------------------------