TPTP Problem File: PHI002^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : PHI002^1 : TPTP v9.0.0. Released v6.1.0.
% Domain : Philosophy
% Problem : Positive properties are possibly exemplified
% Version : [Ben13] axioms.
% English :
% Refs : [Ben13] Benzmueller (2013), Email to Geoff Sutcliffe
% Source : [Ben13]
% Names : T1 [Ben13]
% Status : Theorem
% Rating : 0.12 v9.0.0, 0.10 v8.2.0, 0.23 v8.1.0, 0.18 v7.5.0, 0.14 v7.4.0, 0.44 v7.2.0, 0.38 v7.1.0, 0.50 v7.0.0, 0.43 v6.4.0, 0.33 v6.3.0, 0.40 v6.2.0, 0.71 v6.1.0
% Syntax : Number of formulae : 59 ( 25 unt; 28 typ; 25 def)
% Number of atoms : 106 ( 26 equ; 0 cnn)
% Maximal formula atoms : 10 ( 3 avg)
% Number of connectives : 121 ( 5 ~; 3 |; 4 &; 106 @)
% ( 1 <=>; 2 =>; 0 <=; 0 <~>)
% Maximal formula depth : 15 ( 2 avg)
% Number of types : 3 ( 1 usr)
% Number of type conns : 168 ( 168 >; 0 *; 0 +; 0 <<)
% Number of symbols : 36 ( 33 usr; 8 con; 0-3 aty)
% Number of variables : 72 ( 62 ^; 6 !; 4 ?; 72 :)
% SPC : TH0_THM_EQU_NAR
% Comments :
%------------------------------------------------------------------------------
%----Axioms for Quantified Modal Logic K.
include('Axioms/LCL016^0.ax').
%----Axioms about God
include('Axioms/PHI001^0.ax').
%------------------------------------------------------------------------------
%----T1: Positive properties are possibly exemplified.
thf(thmT1,conjecture,
( mvalid
@ ( mforall_indset
@ ^ [Phi: mu > $i > $o] :
( mimplies @ ( positive @ Phi )
@ ( mdia
@ ( mexists_ind
@ ^ [X: mu] : ( Phi @ X ) ) ) ) ) ) ).
%------------------------------------------------------------------------------