TPTP Problem File: NUN133-1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : NUN133-1 : TPTP v9.0.0. Released v8.1.0.
% Domain : Number Theory
% Problem : Nicomachus' theorem - proof by induction, step case
% Version : Especial.
% English :
% Refs : [Sma21] Smallbone (2021), Email to Geoff Sutcliffe
% Source : [Sma21]
% Names : nicomachus.p [Sma21]
% Status : Unsatisfiable
% Rating : 0.68 v8.2.0, 0.75 v8.1.0
% Syntax : Number of clauses : 18 ( 18 unt; 0 nHn; 4 RR)
% Number of literals : 18 ( 18 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 5 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 8 ( 8 usr; 3 con; 0-2 aty)
% Number of variables : 26 ( 1 sgn)
% SPC : CNF_UNS_RFO_PEQ_UEQ
% Comments :
%------------------------------------------------------------------------------
cnf(plus_comm,axiom,
'+'(X,Y) = '+'(Y,X) ).
cnf(plus_assoc,axiom,
'+'(X,'+'(Y,Z)) = '+'('+'(X,Y),Z) ).
cnf(times_comm,axiom,
times(X,Y) = times(Y,X) ).
cnf(times_assoc,axiom,
times(X,times(Y,Z)) = times(times(X,Y),Z) ).
cnf(plus_zero,axiom,
'+'(X,zero) = X ).
cnf(times_zero,axiom,
times(X,zero) = zero ).
cnf(times_one,axiom,
times(X,one) = X ).
cnf(distr,axiom,
times(X,'+'(Y,Z)) = '+'(times(X,Y),times(X,Z)) ).
cnf(distr_001,axiom,
times('+'(X,Y),Z) = '+'(times(X,Z),times(Y,Z)) ).
cnf(plus_s,axiom,
'+'(s(X),Y) = s('+'(X,Y)) ).
cnf(times_s,axiom,
times(s(X),Y) = '+'(Y,times(X,Y)) ).
cnf(sum_zero,axiom,
sum(zero) = zero ).
cnf(sum_s,axiom,
sum(s(N)) = '+'(s(N),sum(N)) ).
cnf(cubes_zero,axiom,
cubes(zero) = zero ).
cnf(cubes_s,axiom,
cubes(s(N)) = '+'(times(s(N),times(s(N),s(N))),cubes(N)) ).
cnf(plus_sum,axiom,
'+'(sum(N),sum(N)) = times(N,s(N)) ).
cnf(induction_hypothesis,axiom,
times(sum(a),sum(a)) = cubes(a) ).
cnf(goal,negated_conjecture,
times(sum(s(a)),sum(s(a))) != cubes(s(a)) ).
%------------------------------------------------------------------------------