TPTP Problem File: NUN080+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : NUN080+1 : TPTP v9.0.0. Released v7.3.0.
% Domain : Number Theory
% Problem : Robinson arithmetic: There exists X + 2 = Y
% Version : Especial.
% English :
% Refs : [BBJ03] Boolos et al. (2003), Computability and Logic
% : [Smi07] Smith (2007), An Introduction to Goedel's Theorems
% : [Lam18] Lampert (2018), Email to Geoff Sutcliffe
% Source : [Lam18]
% Names : xplustwoidy [Lam18]
% Status : Theorem
% Rating : 0.33 v9.0.0, 0.19 v8.2.0, 0.13 v8.1.0, 0.21 v7.5.0, 0.24 v7.4.0, 0.12 v7.3.0
% Syntax : Number of formulae : 19 ( 1 unt; 0 def)
% Number of atoms : 80 ( 0 equ)
% Maximal formula atoms : 7 ( 4 avg)
% Number of connectives : 95 ( 34 ~; 26 |; 35 &)
% ( 0 <=>; 0 =>; 0 <=; 0 <~>)
% Maximal formula depth : 13 ( 8 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 5 ( 5 usr; 0 prp; 1-3 aty)
% Number of functors : 0 ( 0 usr; 0 con; --- aty)
% Number of variables : 73 ( 47 !; 26 ?)
% SPC : FOF_THM_RFO_NEQ
% Comments : Translated to FOL without equality.
%------------------------------------------------------------------------------
include('Axioms/NUM009+0.ax').
%------------------------------------------------------------------------------
fof(xplustwoidy,conjecture,
? [Y1,Y2,Y3] :
( id(Y3,Y2)
& ? [Y4] :
( r3(Y1,Y4,Y3)
& ? [Y5] :
( r2(Y5,Y4)
& ? [Y6] :
( r1(Y6)
& r2(Y6,Y5) ) ) ) ) ).
%------------------------------------------------------------------------------