TPTP Problem File: NUN079+2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : NUN079+2 : TPTP v9.0.0. Released v7.3.0.
% Domain : Number Theory
% Problem : Robinson arithmetic: There exists X + 2 = 1
% Version : Especial.
% English :
% Refs : [BBJ03] Boolos et al. (2003), Computability and Logic
% : [Smi07] Smith (2007), An Introduction to Goedel's Theorems
% : [Lam18] Lampert (2018), Email to Geoff Sutcliffe
% Source : [Lam18]
% Names : xplustwoeqone [Lam18]
% Status : CounterSatisfiable
% Rating : 1.00 v7.3.0
% Syntax : Number of formulae : 12 ( 0 unt; 0 def)
% Number of atoms : 51 ( 18 equ)
% Maximal formula atoms : 7 ( 4 avg)
% Number of connectives : 53 ( 14 ~; 10 |; 29 &)
% ( 0 <=>; 0 =>; 0 <=; 0 <~>)
% Maximal formula depth : 10 ( 8 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 5 ( 4 usr; 0 prp; 1-3 aty)
% Number of functors : 0 ( 0 usr; 0 con; --- aty)
% Number of variables : 50 ( 23 !; 27 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : Translated to FOL with equality.
%------------------------------------------------------------------------------
include('Axioms/NUM008+0.ax').
%------------------------------------------------------------------------------
fof(xplustwoeqone,conjecture,
? [Y1,Y2] :
( ? [Y3] :
( r3(Y1,Y3,Y2)
& ? [Y4] :
( r2(Y4,Y3)
& ? [Y6] :
( r1(Y6)
& r2(Y6,Y4) ) ) )
& ? [Y5] :
( Y2 = Y5
& ? [Y7] :
( r1(Y7)
& r2(Y7,Y5) ) ) ) ).
%------------------------------------------------------------------------------