TPTP Problem File: NUN068+2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : NUN068+2 : TPTP v9.0.0. Released v7.3.0.
% Domain : Number Theory
% Problem : Robinson arithmetic: There exists X != 0 and X != 1
% Version : Especial.
% English :
% Refs : [BBJ03] Boolos et al. (2003), Computability and Logic
% : [Smi07] Smith (2007), An Introduction to Goedel's Theorems
% : [Lam18] Lampert (2018), Email to Geoff Sutcliffe
% Source : [Lam18]
% Names : nonzerosnononesexist [Lam18]
% Status : Theorem
% Rating : 0.24 v9.0.0, 0.25 v8.2.0, 0.22 v8.1.0, 0.28 v7.5.0, 0.31 v7.4.0, 0.17 v7.3.0
% Syntax : Number of formulae : 12 ( 0 unt; 0 def)
% Number of atoms : 49 ( 19 equ)
% Maximal formula atoms : 5 ( 4 avg)
% Number of connectives : 56 ( 19 ~; 13 |; 24 &)
% ( 0 <=>; 0 =>; 0 <=; 0 <~>)
% Maximal formula depth : 9 ( 7 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 5 ( 4 usr; 0 prp; 1-3 aty)
% Number of functors : 0 ( 0 usr; 0 con; --- aty)
% Number of variables : 47 ( 26 !; 21 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : Translated to FOL with equality.
%------------------------------------------------------------------------------
include('Axioms/NUM008+0.ax').
%------------------------------------------------------------------------------
fof(nonzerosnononesexist,conjecture,
? [Y1] :
( ! [Y2] :
( ! [Y3] :
( ~ r1(Y3)
| ~ r2(Y3,Y2) )
| Y1 != Y2 )
& ! [Y4] :
( ~ r1(Y4)
| Y1 != Y4 ) ) ).
%------------------------------------------------------------------------------