TPTP Problem File: NUN068+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : NUN068+1 : TPTP v9.0.0. Released v7.3.0.
% Domain : Number Theory
% Problem : Robinson arithmetic: There exists X != 0 and X != 1
% Version : Especial.
% English :
% Refs : [BBJ03] Boolos et al. (2003), Computability and Logic
% : [Smi07] Smith (2007), An Introduction to Goedel's Theorems
% : [Lam18] Lampert (2018), Email to Geoff Sutcliffe
% Source : [Lam18]
% Names : nonzerosnononesexistid [Lam18]
% Status : Theorem
% Rating : 0.33 v9.0.0, 0.31 v8.2.0, 0.33 v8.1.0, 0.43 v7.5.0, 0.33 v7.4.0, 0.31 v7.3.0
% Syntax : Number of formulae : 19 ( 1 unt; 0 def)
% Number of atoms : 80 ( 0 equ)
% Maximal formula atoms : 7 ( 4 avg)
% Number of connectives : 100 ( 39 ~; 29 |; 32 &)
% ( 0 <=>; 0 =>; 0 <=; 0 <~>)
% Maximal formula depth : 13 ( 8 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 5 ( 5 usr; 0 prp; 1-3 aty)
% Number of functors : 0 ( 0 usr; 0 con; --- aty)
% Number of variables : 71 ( 50 !; 21 ?)
% SPC : FOF_THM_RFO_NEQ
% Comments : Translated to FOL without equality.
%------------------------------------------------------------------------------
include('Axioms/NUM009+0.ax').
%------------------------------------------------------------------------------
fof(nonzerosnononesexistid,conjecture,
? [Y1] :
( ! [Y2] :
( ! [Y3] :
( ~ r1(Y3)
| ~ r2(Y3,Y2) )
| ~ id(Y1,Y2) )
& ! [Y4] :
( ~ id(Y1,Y4)
| ~ r1(Y4) ) ) ).
%------------------------------------------------------------------------------