TPTP Problem File: NUN062+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : NUN062+1 : TPTP v9.0.0. Bugfixed v7.4.0.
% Domain : Number Theory
% Problem : Robinson arithmetic: There exist infinite numbers
% Version : Especial.
% English :
% Refs : [BBJ03] Boolos et al. (2003), Computability and Logic
% : [Smi07] Smith (2007), An Introduction to Goedel's Theorems
% : [Lam18] Lampert (2018), Email to Geoff Sutcliffe
% Source : [Lam18]
% Names : infiniteNumbersid [Lam18]
% Status : Theorem
% Rating : 0.40 v9.0.0, 0.25 v8.2.0, 0.27 v8.1.0, 0.57 v7.5.0, 0.81 v7.4.0
% Syntax : Number of formulae : 19 ( 1 unt; 0 def)
% Number of atoms : 79 ( 0 equ)
% Maximal formula atoms : 7 ( 4 avg)
% Number of connectives : 96 ( 36 ~; 27 |; 33 &)
% ( 0 <=>; 0 =>; 0 <=; 0 <~>)
% Maximal formula depth : 13 ( 8 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 5 ( 5 usr; 0 prp; 1-3 aty)
% Number of functors : 0 ( 0 usr; 0 con; --- aty)
% Number of variables : 72 ( 49 !; 23 ?)
% SPC : FOF_THM_RFO_NEQ
% Comments : Translated to FOL without equality.
% Bugfixes : v7.4.0 - Bugfixes in formulae's use if the r1/3 predicate.
%------------------------------------------------------------------------------
include('Axioms/NUM009+0.ax').
%------------------------------------------------------------------------------
fof(infiniteNumbersid,conjecture,
! [X1] :
? [Y2,Y1] :
( ! [Y4] :
( ~ id(Y1,Y4)
| ~ r1(Y4) )
& ? [Y3] :
( id(Y3,Y2)
& r3(X1,Y1,Y3) ) ) ).
%------------------------------------------------------------------------------