TPTP Problem File: NUN025^3.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : NUN025^3 : TPTP v9.0.0. Released v6.4.0.
% Domain : Number Theory
% Problem : Function h s.t. h(0) = 1, h(1) = 0, h(2) = 1, with witness
% Version : Especial.
% English : Using an axiomatiztion of if-then-else, find the if-then-else
% term that expresses the function H.
% Refs : [Rie16] Riener (2016), Email to Geoff Sutcliffe
% Source : [TPTP]
% Names : ntape6-2-with-witness2.tptp [Rie16]
% Status : Theorem
% Rating : 0.38 v9.0.0, 0.40 v8.2.0, 0.31 v8.1.0, 0.27 v7.5.0, 0.29 v7.4.0, 0.22 v7.2.0, 0.12 v7.1.0, 0.38 v7.0.0, 0.43 v6.4.0
% Syntax : Number of formulae : 5 ( 0 unt; 4 typ; 0 def)
% Number of atoms : 10 ( 10 equ; 0 cnn)
% Maximal formula atoms : 8 ( 10 avg)
% Number of connectives : 38 ( 3 ~; 0 |; 6 &; 26 @)
% ( 0 <=>; 3 =>; 0 <=; 0 <~>)
% Maximal formula depth : 9 ( 9 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 6 ( 6 >; 0 *; 0 +; 0 <<)
% Number of symbols : 5 ( 4 usr; 1 con; 0-3 aty)
% Number of variables : 10 ( 0 ^; 9 !; 1 ?; 10 :)
% SPC : TH0_THM_EQU_NAR
% Comments :
%------------------------------------------------------------------------------
thf(n6,type,
zero: $i ).
thf(n7,type,
s: $i > $i ).
thf(n8,type,
ite: $o > $i > $i > $i ).
thf(n9,type,
h: $i > $i ).
thf(n10,conjecture,
( ( ! [X100: $o,U: $i,V: $i] :
( X100
=> ( ( ite @ X100 @ U @ V )
= U ) )
& ! [X100: $o,U: $i,V: $i] :
( ~ X100
=> ( ( ite @ X100 @ U @ V )
= V ) )
& ! [X: $i] :
( ( s @ X )
!= zero )
& ! [X: $i] :
( ( s @ X )
!= X )
& ! [X: $i] :
( ( h @ X )
= ( ite @ ( X = zero ) @ ( s @ zero )
@ ( ite
@ ( X
= ( s @ zero ) )
@ zero
@ ( s @ zero ) ) ) ) )
=> ? [H: $i > $i] :
( ( ( H @ zero )
= ( s @ zero ) )
& ( ( H @ ( s @ zero ) )
= zero )
& ( ( H @ ( s @ ( s @ zero ) ) )
= ( s @ zero ) ) ) ) ).
%------------------------------------------------------------------------------