TPTP Problem File: NUM923_10.p

View Solutions - Solve Problem

%------------------------------------------------------------------------------
% File     : NUM923_10 : TPTP v9.0.0. Released v8.2.0.
% Domain   : Number Theory
% Problem  : Sum of two squares line 23, 100 axioms selected
% Version  : NUM923_1 with the conjecture removed
% English  :

% Refs     : [BN10]  Boehme & Nipkow (2010), Sledgehammer: Judgement Day
%          : [Bla11] Blanchette (2011), Email to Geoff Sutcliffe
% Source   : [TPTP]
% Names    : 

% Status   : Satisfiable
% Rating   : 0.00 v8.2.0
% Syntax   : Number of formulae    :   92 (  39 unt;  18 typ;   0 def)
%            Number of atoms       :  118 (  71 equ)
%            Maximal formula atoms :    3 (   1 avg)
%            Number of connectives :   54 (  10   ~;   2   |;   2   &)
%                                         (  17 <=>;  23  =>;   0  <=;   0 <~>)
%            Maximal formula depth :    9 (   5 avg)
%            Maximal term depth    :    5 (   2 avg)
%            Number of types       :    5 (   4 usr)
%            Number of type conns  :   18 (  10   >;   8   *;   0   +;   0  <<)
%            Number of predicates  :    2 (   1 usr;   0 prp; 1-2 aty)
%            Number of functors    :   13 (  13 usr;   4 con; 0-3 aty)
%            Number of variables   :  237 ( 232   !;   5   ?; 237   :)
% SPC      : TF0_SAT_EQU_NAR

% Comments : This file was generated by Isabelle (most likely Sledgehammer)
%            2011-08-09 15:20:10
%------------------------------------------------------------------------------
%----Should-be-implicit typings (4)
tff(ty_ty_tc__HOL__Obool,type,
    bool: $tType ).

tff(ty_ty_tc__Int__Oint,type,
    int: $tType ).

tff(ty_ty_tc__fun_Itc__prod_Itc__Int__Oint_Mtc__Int__Oint_J_Mtc__HOL__Obool_J,type,
    fun_Pr974702441t_bool: $tType ).

tff(ty_ty_tc__prod_Itc__Int__Oint_Mtc__Int__Oint_J,type,
    product_prod_int_int: $tType ).

%----Explicit typings (14)
tff(sy_c_Groups_Ominus__class_Ominus_000tc__Int__Oint,type,
    minus_minus_int: ( int * int ) > int ).

tff(sy_c_Groups_Oplus__class_Oplus_000tc__Int__Oint,type,
    plus_plus_int: ( int * int ) > int ).

tff(sy_c_Groups_Otimes__class_Otimes_000tc__Int__Oint,type,
    times_times_int: ( int * int ) > int ).

tff(sy_c_Orderings_Oord__class_Oless__eq_000tc__Int__Oint,type,
    ord_less_eq_int: ( int * int ) > bool ).

tff(sy_c_Product__Type_OPair_000tc__Int__Oint_000tc__Int__Oint,type,
    product_Pair_int_int: ( int * int ) > product_prod_int_int ).

tff(sy_c_Product__Type_Ocurry_000tc__Int__Oint_000tc__Int__Oint_000tc__HOL__Obool,type,
    produc262399358t_bool: ( fun_Pr974702441t_bool * int * int ) > bool ).

tff(sy_c_TwoSquares__Mirabelle__wxgjvpjuzc_Ois__sum2sq,type,
    twoSqu1431725154sum2sq: int > bool ).

tff(sy_c_TwoSquares__Mirabelle__wxgjvpjuzc_Osum2sq,type,
    twoSqu1319573848sum2sq: product_prod_int_int > int ).

tff(sy_c_hAPP_000tc__prod_Itc__Int__Oint_Mtc__Int__Oint_J_000tc__HOL__Obool,type,
    hAPP_P603027463t_bool: ( fun_Pr974702441t_bool * product_prod_int_int ) > bool ).

tff(sy_c_hBOOL,type,
    hBOOL: bool > $o ).

tff(sy_v_a,type,
    a: int ).

tff(sy_v_b,type,
    b: int ).

tff(sy_v_p,type,
    p: int ).

tff(sy_v_q,type,
    q: int ).

%----Relevant facts (74)
tff(fact_0_xzgcda__linear__aux1,axiom,
    ! [A_28: int,R: int,B_25: int,M_1: int,C_21: int,D_6: int,N: int] : ( plus_plus_int(times_times_int(minus_minus_int(A_28,times_times_int(R,B_25)),M_1),times_times_int(minus_minus_int(C_21,times_times_int(R,D_6)),N)) = minus_minus_int(plus_plus_int(times_times_int(A_28,M_1),times_times_int(C_21,N)),times_times_int(R,plus_plus_int(times_times_int(B_25,M_1),times_times_int(D_6,N)))) ) ).

tff(fact_1_mult__diff__mult,axiom,
    ! [X_6: int,Y_6: int,A_29: int,B_26: int] : ( minus_minus_int(times_times_int(X_6,Y_6),times_times_int(A_29,B_26)) = plus_plus_int(times_times_int(X_6,minus_minus_int(Y_6,B_26)),times_times_int(minus_minus_int(X_6,A_29),B_26)) ) ).

tff(fact_2_eq__add__iff2,axiom,
    ! [Aa: int,E: int,C: int,Ba: int,D_1: int] :
      ( ( plus_plus_int(times_times_int(Aa,E),C) = plus_plus_int(times_times_int(Ba,E),D_1) )
    <=> ( C = plus_plus_int(times_times_int(minus_minus_int(Ba,Aa),E),D_1) ) ) ).

tff(fact_3_eq__add__iff1,axiom,
    ! [Aa: int,E: int,C: int,Ba: int,D_1: int] :
      ( ( plus_plus_int(times_times_int(Aa,E),C) = plus_plus_int(times_times_int(Ba,E),D_1) )
    <=> ( plus_plus_int(times_times_int(minus_minus_int(Aa,Ba),E),C) = D_1 ) ) ).

tff(fact_4_is__sum2sq__def,axiom,
    ! [X_4: int] :
      ( hBOOL(twoSqu1431725154sum2sq(X_4))
    <=> ? [A_5: int,B_5: int] : ( twoSqu1319573848sum2sq(product_Pair_int_int(A_5,B_5)) = X_4 ) ) ).

tff(fact_5_Int2_Oaux1,axiom,
    ! [A_28: int,B_25: int,C_21: int] :
      ( ( minus_minus_int(A_28,B_25) = C_21 )
     => ( A_28 = plus_plus_int(C_21,B_25) ) ) ).

tff(fact_6_zdiff__zmult__distrib2,axiom,
    ! [W: int,Z1: int,Z2: int] : ( times_times_int(W,minus_minus_int(Z1,Z2)) = minus_minus_int(times_times_int(W,Z1),times_times_int(W,Z2)) ) ).

tff(fact_7_zdiff__zmult__distrib,axiom,
    ! [Z1: int,Z2: int,W: int] : ( times_times_int(minus_minus_int(Z1,Z2),W) = minus_minus_int(times_times_int(Z1,W),times_times_int(Z2,W)) ) ).

tff(fact_8_zadd__zmult__distrib2,axiom,
    ! [W: int,Z1: int,Z2: int] : ( times_times_int(W,plus_plus_int(Z1,Z2)) = plus_plus_int(times_times_int(W,Z1),times_times_int(W,Z2)) ) ).

tff(fact_9_zadd__zmult__distrib,axiom,
    ! [Z1: int,Z2: int,W: int] : ( times_times_int(plus_plus_int(Z1,Z2),W) = plus_plus_int(times_times_int(Z1,W),times_times_int(Z2,W)) ) ).

tff(fact_10_diff__add__cancel,axiom,
    ! [A_27: int,B_24: int] : ( plus_plus_int(minus_minus_int(A_27,B_24),B_24) = A_27 ) ).

tff(fact_11_ab__semigroup__mult__class_Omult__ac_I1_J,axiom,
    ! [A_26: int,B_23: int,C_20: int] : ( times_times_int(times_times_int(A_26,B_23),C_20) = times_times_int(A_26,times_times_int(B_23,C_20)) ) ).

tff(fact_12_add__right__imp__eq,axiom,
    ! [B_22: int,A_25: int,C_19: int] :
      ( ( plus_plus_int(B_22,A_25) = plus_plus_int(C_19,A_25) )
     => ( B_22 = C_19 ) ) ).

tff(fact_13_add__imp__eq,axiom,
    ! [A_24: int,B_21: int,C_18: int] :
      ( ( plus_plus_int(A_24,B_21) = plus_plus_int(A_24,C_18) )
     => ( B_21 = C_18 ) ) ).

tff(fact_14_add__left__imp__eq,axiom,
    ! [A_23: int,B_20: int,C_17: int] :
      ( ( plus_plus_int(A_23,B_20) = plus_plus_int(A_23,C_17) )
     => ( B_20 = C_17 ) ) ).

tff(fact_15_add__right__cancel,axiom,
    ! [Ba: int,Aa: int,C: int] :
      ( ( plus_plus_int(Ba,Aa) = plus_plus_int(C,Aa) )
    <=> ( Ba = C ) ) ).

tff(fact_16_add__left__cancel,axiom,
    ! [Aa: int,Ba: int,C: int] :
      ( ( plus_plus_int(Aa,Ba) = plus_plus_int(Aa,C) )
    <=> ( Ba = C ) ) ).

tff(fact_17_ab__semigroup__add__class_Oadd__ac_I1_J,axiom,
    ! [A_22: int,B_19: int,C_16: int] : ( plus_plus_int(plus_plus_int(A_22,B_19),C_16) = plus_plus_int(A_22,plus_plus_int(B_19,C_16)) ) ).

tff(fact_18_diff__eq__diff__eq,axiom,
    ! [Aa: int,Ba: int,C: int,D_1: int] :
      ( ( minus_minus_int(Aa,Ba) = minus_minus_int(C,D_1) )
     => ( ( Aa = Ba )
      <=> ( C = D_1 ) ) ) ).

tff(fact_19_zmult__assoc,axiom,
    ! [Z1: int,Z2: int,Z3: int] : ( times_times_int(times_times_int(Z1,Z2),Z3) = times_times_int(Z1,times_times_int(Z2,Z3)) ) ).

tff(fact_20_zmult__commute,axiom,
    ! [Z: int,W: int] : ( times_times_int(Z,W) = times_times_int(W,Z) ) ).

tff(fact_21_zadd__assoc,axiom,
    ! [Z1: int,Z2: int,Z3: int] : ( plus_plus_int(plus_plus_int(Z1,Z2),Z3) = plus_plus_int(Z1,plus_plus_int(Z2,Z3)) ) ).

tff(fact_22_zadd__left__commute,axiom,
    ! [X_5: int,Y_5: int,Z: int] : ( plus_plus_int(X_5,plus_plus_int(Y_5,Z)) = plus_plus_int(Y_5,plus_plus_int(X_5,Z)) ) ).

tff(fact_23_zadd__commute,axiom,
    ! [Z: int,W: int] : ( plus_plus_int(Z,W) = plus_plus_int(W,Z) ) ).

tff(fact_24_combine__common__factor,axiom,
    ! [A_21: int,E_1: int,B_18: int,C_15: int] : ( plus_plus_int(times_times_int(A_21,E_1),plus_plus_int(times_times_int(B_18,E_1),C_15)) = plus_plus_int(times_times_int(plus_plus_int(A_21,B_18),E_1),C_15) ) ).

tff(fact_25_comm__semiring__class_Odistrib,axiom,
    ! [A_20: int,B_17: int,C_14: int] : ( times_times_int(plus_plus_int(A_20,B_17),C_14) = plus_plus_int(times_times_int(A_20,C_14),times_times_int(B_17,C_14)) ) ).

tff(fact_26_add__diff__add,axiom,
    ! [A_19: int,C_13: int,B_16: int,D_5: int] : ( minus_minus_int(plus_plus_int(A_19,C_13),plus_plus_int(B_16,D_5)) = plus_plus_int(minus_minus_int(A_19,B_16),minus_minus_int(C_13,D_5)) ) ).

tff(fact_27_add__diff__cancel,axiom,
    ! [A_18: int,B_15: int] : ( minus_minus_int(plus_plus_int(A_18,B_15),B_15) = A_18 ) ).

tff(fact_28_crossproduct__eq,axiom,
    ! [W_1: int,Y_4: int,X_4: int,Z_2: int] :
      ( ( plus_plus_int(times_times_int(W_1,Y_4),times_times_int(X_4,Z_2)) = plus_plus_int(times_times_int(W_1,Z_2),times_times_int(X_4,Y_4)) )
    <=> ( ( W_1 = X_4 )
        | ( Y_4 = Z_2 ) ) ) ).

tff(fact_29_comm__semiring__1__class_Onormalizing__semiring__rules_I1_J,axiom,
    ! [A_17: int,M: int,B_14: int] : ( plus_plus_int(times_times_int(A_17,M),times_times_int(B_14,M)) = times_times_int(plus_plus_int(A_17,B_14),M) ) ).

tff(fact_30_comm__semiring__1__class_Onormalizing__semiring__rules_I8_J,axiom,
    ! [A_16: int,B_13: int,C_12: int] : ( times_times_int(plus_plus_int(A_16,B_13),C_12) = plus_plus_int(times_times_int(A_16,C_12),times_times_int(B_13,C_12)) ) ).

tff(fact_31_crossproduct__noteq,axiom,
    ! [C: int,D_1: int,Aa: int,Ba: int] :
      ( ( ( Aa != Ba )
        & ( C != D_1 ) )
    <=> ( plus_plus_int(times_times_int(Aa,C),times_times_int(Ba,D_1)) != plus_plus_int(times_times_int(Aa,D_1),times_times_int(Ba,C)) ) ) ).

tff(fact_32_comm__semiring__1__class_Onormalizing__semiring__rules_I34_J,axiom,
    ! [X_3: int,Y_3: int,Z_1: int] : ( times_times_int(X_3,plus_plus_int(Y_3,Z_1)) = plus_plus_int(times_times_int(X_3,Y_3),times_times_int(X_3,Z_1)) ) ).

tff(fact_33_Pair__inject,axiom,
    ! [A_15: int,B_12: int,A_14: int,B_11: int] :
      ( ( product_Pair_int_int(A_15,B_12) = product_Pair_int_int(A_14,B_11) )
     => ~ ( ( A_15 = A_14 )
         => ( B_12 != B_11 ) ) ) ).

tff(fact_34_Pair__eq,axiom,
    ! [Aa: int,Ba: int,A_13: int,B_10: int] :
      ( ( product_Pair_int_int(Aa,Ba) = product_Pair_int_int(A_13,B_10) )
    <=> ( ( Aa = A_13 )
        & ( Ba = B_10 ) ) ) ).

tff(fact_35_comm__semiring__1__class_Onormalizing__semiring__rules_I7_J,axiom,
    ! [A_12: int,B_9: int] : ( times_times_int(A_12,B_9) = times_times_int(B_9,A_12) ) ).

tff(fact_36_comm__semiring__1__class_Onormalizing__semiring__rules_I19_J,axiom,
    ! [Lx_6: int,Rx_6: int,Ry_4: int] : ( times_times_int(Lx_6,times_times_int(Rx_6,Ry_4)) = times_times_int(Rx_6,times_times_int(Lx_6,Ry_4)) ) ).

tff(fact_37_comm__semiring__1__class_Onormalizing__semiring__rules_I18_J,axiom,
    ! [Lx_5: int,Rx_5: int,Ry_3: int] : ( times_times_int(Lx_5,times_times_int(Rx_5,Ry_3)) = times_times_int(times_times_int(Lx_5,Rx_5),Ry_3) ) ).

tff(fact_38_comm__semiring__1__class_Onormalizing__semiring__rules_I17_J,axiom,
    ! [Lx_4: int,Ly_4: int,Rx_4: int] : ( times_times_int(times_times_int(Lx_4,Ly_4),Rx_4) = times_times_int(Lx_4,times_times_int(Ly_4,Rx_4)) ) ).

tff(fact_39_comm__semiring__1__class_Onormalizing__semiring__rules_I16_J,axiom,
    ! [Lx_3: int,Ly_3: int,Rx_3: int] : ( times_times_int(times_times_int(Lx_3,Ly_3),Rx_3) = times_times_int(times_times_int(Lx_3,Rx_3),Ly_3) ) ).

tff(fact_40_comm__semiring__1__class_Onormalizing__semiring__rules_I14_J,axiom,
    ! [Lx_2: int,Ly_2: int,Rx_2: int,Ry_2: int] : ( times_times_int(times_times_int(Lx_2,Ly_2),times_times_int(Rx_2,Ry_2)) = times_times_int(Lx_2,times_times_int(Ly_2,times_times_int(Rx_2,Ry_2))) ) ).

tff(fact_41_comm__semiring__1__class_Onormalizing__semiring__rules_I15_J,axiom,
    ! [Lx_1: int,Ly_1: int,Rx_1: int,Ry_1: int] : ( times_times_int(times_times_int(Lx_1,Ly_1),times_times_int(Rx_1,Ry_1)) = times_times_int(Rx_1,times_times_int(times_times_int(Lx_1,Ly_1),Ry_1)) ) ).

tff(fact_42_comm__semiring__1__class_Onormalizing__semiring__rules_I13_J,axiom,
    ! [Lx: int,Ly: int,Rx: int,Ry: int] : ( times_times_int(times_times_int(Lx,Ly),times_times_int(Rx,Ry)) = times_times_int(times_times_int(Lx,Rx),times_times_int(Ly,Ry)) ) ).

tff(fact_43_comm__semiring__1__class_Onormalizing__semiring__rules_I24_J,axiom,
    ! [A_11: int,C_11: int] : ( plus_plus_int(A_11,C_11) = plus_plus_int(C_11,A_11) ) ).

tff(fact_44_comm__semiring__1__class_Onormalizing__semiring__rules_I22_J,axiom,
    ! [A_10: int,C_10: int,D_4: int] : ( plus_plus_int(A_10,plus_plus_int(C_10,D_4)) = plus_plus_int(C_10,plus_plus_int(A_10,D_4)) ) ).

tff(fact_45_comm__semiring__1__class_Onormalizing__semiring__rules_I25_J,axiom,
    ! [A_9: int,C_9: int,D_3: int] : ( plus_plus_int(A_9,plus_plus_int(C_9,D_3)) = plus_plus_int(plus_plus_int(A_9,C_9),D_3) ) ).

tff(fact_46_comm__semiring__1__class_Onormalizing__semiring__rules_I21_J,axiom,
    ! [A_8: int,B_8: int,C_8: int] : ( plus_plus_int(plus_plus_int(A_8,B_8),C_8) = plus_plus_int(A_8,plus_plus_int(B_8,C_8)) ) ).

tff(fact_47_comm__semiring__1__class_Onormalizing__semiring__rules_I23_J,axiom,
    ! [A_7: int,B_7: int,C_7: int] : ( plus_plus_int(plus_plus_int(A_7,B_7),C_7) = plus_plus_int(plus_plus_int(A_7,C_7),B_7) ) ).

tff(fact_48_comm__semiring__1__class_Onormalizing__semiring__rules_I20_J,axiom,
    ! [A_6: int,B_6: int,C_6: int,D_2: int] : ( plus_plus_int(plus_plus_int(A_6,B_6),plus_plus_int(C_6,D_2)) = plus_plus_int(plus_plus_int(A_6,C_6),plus_plus_int(B_6,D_2)) ) ).

tff(fact_49_split__paired__All,axiom,
    ! [P_1: fun_Pr974702441t_bool] :
      ( ! [X1: product_prod_int_int] : hBOOL(hAPP_P603027463t_bool(P_1,X1))
    <=> ! [A_5: int,B_5: int] : hBOOL(hAPP_P603027463t_bool(P_1,product_Pair_int_int(A_5,B_5))) ) ).

tff(fact_50_split__paired__Ex,axiom,
    ! [P_1: fun_Pr974702441t_bool] :
      ( ? [X1: product_prod_int_int] : hBOOL(hAPP_P603027463t_bool(P_1,X1))
    <=> ? [A_5: int,B_5: int] : hBOOL(hAPP_P603027463t_bool(P_1,product_Pair_int_int(A_5,B_5))) ) ).

tff(fact_51_prod_Oexhaust,axiom,
    ! [Y_2: product_prod_int_int] :
      ~ ! [A_5: int,B_5: int] : ( Y_2 != product_Pair_int_int(A_5,B_5) ) ).

tff(fact_52_PairE,axiom,
    ! [P: product_prod_int_int] :
      ~ ! [X_2: int,Y_1: int] : ( P != product_Pair_int_int(X_2,Y_1) ) ).

tff(fact_53_curryI,axiom,
    ! [F: fun_Pr974702441t_bool,Aa: int,Ba: int] :
      ( hBOOL(hAPP_P603027463t_bool(F,product_Pair_int_int(Aa,Ba)))
     => hBOOL(produc262399358t_bool(F,Aa,Ba)) ) ).

tff(fact_54_curryD,axiom,
    ! [F: fun_Pr974702441t_bool,Aa: int,Ba: int] :
      ( hBOOL(produc262399358t_bool(F,Aa,Ba))
     => hBOOL(hAPP_P603027463t_bool(F,product_Pair_int_int(Aa,Ba))) ) ).

tff(fact_55_curryE,axiom,
    ! [F: fun_Pr974702441t_bool,Aa: int,Ba: int] :
      ( hBOOL(produc262399358t_bool(F,Aa,Ba))
     => hBOOL(hAPP_P603027463t_bool(F,product_Pair_int_int(Aa,Ba))) ) ).

tff(fact_56_curry__conv,axiom,
    ! [F: fun_Pr974702441t_bool,Aa: int,Ba: int] :
      ( hBOOL(produc262399358t_bool(F,Aa,Ba))
    <=> hBOOL(hAPP_P603027463t_bool(F,product_Pair_int_int(Aa,Ba))) ) ).

tff(fact_57_le__add__iff1,axiom,
    ! [Aa: int,E: int,C: int,Ba: int,D_1: int] :
      ( hBOOL(ord_less_eq_int(plus_plus_int(times_times_int(Aa,E),C),plus_plus_int(times_times_int(Ba,E),D_1)))
    <=> hBOOL(ord_less_eq_int(plus_plus_int(times_times_int(minus_minus_int(Aa,Ba),E),C),D_1)) ) ).

tff(fact_58_le__add__iff2,axiom,
    ! [Aa: int,E: int,C: int,Ba: int,D_1: int] :
      ( hBOOL(ord_less_eq_int(plus_plus_int(times_times_int(Aa,E),C),plus_plus_int(times_times_int(Ba,E),D_1)))
    <=> hBOOL(ord_less_eq_int(C,plus_plus_int(times_times_int(minus_minus_int(Ba,Aa),E),D_1))) ) ).

tff(fact_59_zadd__left__mono,axiom,
    ! [K: int,I: int,J: int] :
      ( hBOOL(ord_less_eq_int(I,J))
     => hBOOL(ord_less_eq_int(plus_plus_int(K,I),plus_plus_int(K,J))) ) ).

tff(fact_60_diff__eq__diff__less__eq,axiom,
    ! [Aa: int,Ba: int,C: int,D_1: int] :
      ( ( minus_minus_int(Aa,Ba) = minus_minus_int(C,D_1) )
     => ( hBOOL(ord_less_eq_int(Aa,Ba))
      <=> hBOOL(ord_less_eq_int(C,D_1)) ) ) ).

tff(fact_61_add__le__imp__le__left,axiom,
    ! [C_5: int,A_4: int,B_4: int] :
      ( hBOOL(ord_less_eq_int(plus_plus_int(C_5,A_4),plus_plus_int(C_5,B_4)))
     => hBOOL(ord_less_eq_int(A_4,B_4)) ) ).

tff(fact_62_add__le__imp__le__right,axiom,
    ! [A_3: int,C_4: int,B_3: int] :
      ( hBOOL(ord_less_eq_int(plus_plus_int(A_3,C_4),plus_plus_int(B_3,C_4)))
     => hBOOL(ord_less_eq_int(A_3,B_3)) ) ).

tff(fact_63_add__mono,axiom,
    ! [C_3: int,D: int,A_2: int,B_2: int] :
      ( hBOOL(ord_less_eq_int(A_2,B_2))
     => ( hBOOL(ord_less_eq_int(C_3,D))
       => hBOOL(ord_less_eq_int(plus_plus_int(A_2,C_3),plus_plus_int(B_2,D))) ) ) ).

tff(fact_64_add__left__mono,axiom,
    ! [C_2: int,A_1: int,B_1: int] :
      ( hBOOL(ord_less_eq_int(A_1,B_1))
     => hBOOL(ord_less_eq_int(plus_plus_int(C_2,A_1),plus_plus_int(C_2,B_1))) ) ).

tff(fact_65_add__right__mono,axiom,
    ! [C_1: int,A: int,B: int] :
      ( hBOOL(ord_less_eq_int(A,B))
     => hBOOL(ord_less_eq_int(plus_plus_int(A,C_1),plus_plus_int(B,C_1))) ) ).

tff(fact_66_add__le__cancel__left,axiom,
    ! [C: int,Aa: int,Ba: int] :
      ( hBOOL(ord_less_eq_int(plus_plus_int(C,Aa),plus_plus_int(C,Ba)))
    <=> hBOOL(ord_less_eq_int(Aa,Ba)) ) ).

tff(fact_67_add__le__cancel__right,axiom,
    ! [Aa: int,C: int,Ba: int] :
      ( hBOOL(ord_less_eq_int(plus_plus_int(Aa,C),plus_plus_int(Ba,C)))
    <=> hBOOL(ord_less_eq_int(Aa,Ba)) ) ).

tff(fact_68_order__refl,axiom,
    ! [X_1: int] : hBOOL(ord_less_eq_int(X_1,X_1)) ).

tff(fact_69_linorder__le__cases,axiom,
    ! [X: int,Y: int] :
      ( ~ hBOOL(ord_less_eq_int(X,Y))
     => hBOOL(ord_less_eq_int(Y,X)) ) ).

tff(fact_70_zle__refl,axiom,
    ! [W: int] : hBOOL(ord_less_eq_int(W,W)) ).

tff(fact_71_zle__linear,axiom,
    ! [Z: int,W: int] :
      ( hBOOL(ord_less_eq_int(Z,W))
      | hBOOL(ord_less_eq_int(W,Z)) ) ).

tff(fact_72_zle__trans,axiom,
    ! [K: int,I: int,J: int] :
      ( hBOOL(ord_less_eq_int(I,J))
     => ( hBOOL(ord_less_eq_int(J,K))
       => hBOOL(ord_less_eq_int(I,K)) ) ) ).

tff(fact_73_zle__antisym,axiom,
    ! [Z: int,W: int] :
      ( hBOOL(ord_less_eq_int(Z,W))
     => ( hBOOL(ord_less_eq_int(W,Z))
       => ( Z = W ) ) ) ).

%----Conjectures (1)
% tff(conj_0,conjecture,
%     times_times_int(twoSqu1319573848sum2sq(product_Pair_int_int(a,b)),twoSqu1319573848sum2sq(product_Pair_int_int(p,q))) = twoSqu1319573848sum2sq(product_Pair_int_int(plus_plus_int(times_times_int(a,p),times_times_int(b,q)),minus_minus_int(times_times_int(a,q),times_times_int(b,p)))) ).

%------------------------------------------------------------------------------