TPTP Problem File: NUM861+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : NUM861+1 : TPTP v9.0.0. Released v4.1.0.
% Domain : Number Theory
% Problem : Upper bound replace maximum embedded in a context (2)
% Version : Especial.
% English : This is an abstraction of a problem to show equivalence of two
% given constraint models. More precisely, the task is to prove that
% the minimal solutions of a certain constraint model are preserved
% if the applications of the "maximum" function in it are replaced
% by "upper bounds" only.
% Refs : [Bau10] Baumgartner (2010), Email to G. Sutcliffe
% : [BS09] Baumgartner & Slaney (2009), Constraint Modelling: A C
% Source : [Bau10]
% Names :
% Status : Theorem
% Rating : 0.70 v9.0.0, 0.69 v8.2.0, 0.72 v8.1.0, 0.75 v7.5.0, 0.84 v7.4.0, 0.67 v7.3.0, 0.69 v7.2.0, 0.62 v7.1.0, 0.61 v7.0.0, 0.73 v6.3.0, 0.62 v6.2.0, 0.68 v6.1.0, 0.73 v6.0.0, 0.74 v5.5.0, 0.81 v5.4.0, 0.89 v5.3.0, 0.93 v5.2.0, 0.95 v5.0.0, 0.96 v4.1.0
% Syntax : Number of formulae : 14 ( 1 unt; 0 def)
% Number of atoms : 35 ( 3 equ)
% Maximal formula atoms : 4 ( 2 avg)
% Number of connectives : 23 ( 2 ~; 3 |; 6 &)
% ( 8 <=>; 4 =>; 0 <=; 0 <~>)
% Maximal formula depth : 8 ( 5 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 7 ( 6 usr; 0 prp; 2-3 aty)
% Number of functors : 4 ( 4 usr; 1 con; 0-2 aty)
% Number of variables : 38 ( 37 !; 1 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments :
%------------------------------------------------------------------------------
%----Axioms about integers
fof(lesseq_ref,axiom,
! [X] : lesseq(X,X) ).
fof(lesseq_trans,axiom,
! [X,Y,Z] :
( ( lesseq(X,Y)
& lesseq(Y,Z) )
=> lesseq(X,Z) ) ).
fof(lesseq_antisymmetric,axiom,
! [X,Y] :
( ( lesseq(X,Y)
& lesseq(Y,X) )
=> X = Y ) ).
%----Total order:
fof(lesseq_total,axiom,
! [X,Y] :
( lesseq(X,Y)
| lesseq(Y,X) ) ).
%----sum is monotone
fof(sum_monotone_1,axiom,
! [X,Y,Z] :
( lesseq(X,Y)
<=> lesseq(sum(Z,X),sum(Z,Y)) ) ).
%----summation(X) is meant as an abstraction of a certain summation term in
%----the original constraint problem
fof(summation_monotone,axiom,
! [X,Y] :
( lesseq(X,Y)
<=> lesseq(summation(X),summation(Y)) ) ).
%----Maximum function
fof(max_1,axiom,
! [X,Y] :
( max(X,Y) = X
| ~ lesseq(Y,X) ) ).
fof(max_2,axiom,
! [X,Y] :
( max(X,Y) = Y
| ~ lesseq(X,Y) ) ).
%----Z is an upper bound of Y and Z
fof(ub,axiom,
! [X,Y,Z] :
( ub(X,Y,Z)
<=> ( lesseq(X,Z)
& lesseq(Y,Z) ) ) ).
%----The model - version with max
fof(model_max_4,axiom,
! [X,Y,N] :
( model_max(X,Y,N)
<=> lesseq(sum(c,max(X,Y)),N) ) ).
%----The model - version with ub
fof(model_ub_4,axiom,
! [X,Y,N] :
( model_ub(X,Y,N)
<=> ? [Z] :
( ub(X,Y,Z)
& lesseq(sum(c,Z),N) ) ) ).
%----minimal solution, model_max
fof(minsol_model_max,axiom,
! [X,Y,N] :
( minsol_model_max(X,Y,N)
<=> ( model_max(X,Y,N)
& ! [Z] :
( model_max(X,Y,Z)
=> lesseq(N,Z) ) ) ) ).
%----minimal solution, model_ub
fof(minsol_model_ub,axiom,
! [X,Y,N] :
( minsol_model_ub(X,Y,N)
<=> ( model_ub(X,Y,N)
& ! [Z] :
( model_ub(X,Y,Z)
=> lesseq(N,Z) ) ) ) ).
%----Conjecture: minimal solutions of model_max and model_ub are the same:
fof(max_is_ub_1,conjecture,
! [X,Y,Z] :
( minsol_model_ub(X,Y,Z)
<=> minsol_model_max(X,Y,Z) ) ).
%------------------------------------------------------------------------------