TPTP Problem File: NUM832^5.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : NUM832^5 : TPTP v9.0.0. Bugfixed v5.2.0.
% Domain : Number Theory (Induction on naturals)
% Problem : TPS problem from PETER-THMS
% Version : Especial.
% English :
% Refs : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source : [Bro09]
% Names : tps_0998 [Bro09]
% Status : Theorem
% Rating : 0.75 v9.0.0, 0.90 v8.2.0, 0.92 v8.1.0, 0.91 v7.5.0, 1.00 v5.2.0
% Syntax : Number of formulae : 6 ( 1 unt; 4 typ; 1 def)
% Number of atoms : 10 ( 1 equ; 0 cnn)
% Maximal formula atoms : 8 ( 5 avg)
% Number of connectives : 42 ( 0 ~; 0 |; 4 &; 32 @)
% ( 0 <=>; 6 =>; 0 <=; 0 <~>)
% Maximal formula depth : 15 ( 8 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 5 ( 5 >; 0 *; 0 +; 0 <<)
% Number of symbols : 5 ( 4 usr; 2 con; 0-3 aty)
% Number of variables : 13 ( 0 ^; 12 !; 1 ?; 13 :)
% SPC : TH0_THM_EQU_NAR
% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
% project in the Department of Mathematical Sciences at Carnegie
% Mellon University. Distributed under the Creative Commons copyleft
% license: http://creativecommons.org/licenses/by-sa/3.0/
% :
% Bugfixes : v5.2.0 - Added missing type declarations.
%------------------------------------------------------------------------------
thf(c0_type,type,
c0: $i ).
thf(cR_type,type,
cR: $i > $i > $i > $o ).
thf(cS_type,type,
cS: $i > $i ).
thf(cIND_type,type,
cIND: $o ).
thf(cIND_def,definition,
( cIND
= ( ! [Xp: $i > $o] :
( ( ( Xp @ c0 )
& ! [Xx: $i] :
( ( Xp @ Xx )
=> ( Xp @ ( cS @ Xx ) ) ) )
=> ! [Xx: $i] : ( Xp @ Xx ) ) ) ) ).
thf(cTHM604,conjecture,
( ( cIND
& ! [Xn: $i] : ( cR @ c0 @ Xn @ ( cS @ Xn ) )
& ! [Xm: $i,Xk: $i] :
( ( cR @ Xm @ ( cS @ c0 ) @ Xk )
=> ( cR @ ( cS @ Xm ) @ c0 @ Xk ) )
& ! [Xm: $i,Xn: $i,Xk: $i,Xl: $i] :
( ( cR @ ( cS @ Xm ) @ Xn @ Xl )
=> ( ( cR @ Xm @ Xl @ Xk )
=> ( cR @ ( cS @ Xm ) @ ( cS @ Xn ) @ Xk ) ) ) )
=> ! [Xx: $i,Xy: $i] :
? [Xz: $i] : ( cR @ Xx @ Xy @ Xz ) ) ).
%------------------------------------------------------------------------------