TPTP Problem File: NUM829^5.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : NUM829^5 : TPTP v9.0.0. Bugfixed v5.3.0.
% Domain : Number Theory (Induction on naturals)
% Problem : TPS problem from PA-THMS
% Version : Especial.
% English :
% Refs : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source : [Bro09]
% Names : tps_0763 [Bro09]
% Status : Theorem
% Rating : 1.00 v8.2.0, 0.92 v8.1.0, 0.91 v7.5.0, 0.86 v7.4.0, 1.00 v5.3.0
% Syntax : Number of formulae : 11 ( 3 unt; 7 typ; 3 def)
% Number of atoms : 16 ( 10 equ; 0 cnn)
% Maximal formula atoms : 4 ( 4 avg)
% Number of connectives : 30 ( 0 ~; 0 |; 3 &; 24 @)
% ( 0 <=>; 3 =>; 0 <=; 0 <~>)
% Maximal formula depth : 4 ( 2 avg)
% Number of types : 2 ( 1 usr)
% Number of type conns : 5 ( 5 >; 0 *; 0 +; 0 <<)
% Number of symbols : 7 ( 6 usr; 4 con; 0-2 aty)
% Number of variables : 9 ( 0 ^; 9 !; 0 ?; 9 :)
% SPC : TH0_THM_EQU_NAR
% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
% project in the Department of Mathematical Sciences at Carnegie
% Mellon University. Distributed under the Creative Commons copyleft
% license: http://creativecommons.org/licenses/by-sa/3.0/
% :
% Bugfixes : v5.2.0 - Added missing type declarations.
% : v5.3.0 - Fixed tType to $tType from last bugfixes.
%------------------------------------------------------------------------------
thf(n_type,type,
n: $tType ).
thf(c0_type,type,
c0: n ).
thf(cS_type,type,
cS: n > n ).
thf(c_plus_type,type,
c_plus: n > n > n ).
thf(cPA_1_type,type,
cPA_1: $o ).
thf(cPA_2_type,type,
cPA_2: $o ).
thf(cPA_IND_EQ_type,type,
cPA_IND_EQ: $o ).
thf(cPA_1_def,definition,
( cPA_1
= ( ! [Xx: n] :
( ( c_plus @ Xx @ c0 )
= Xx ) ) ) ).
thf(cPA_2_def,definition,
( cPA_2
= ( ! [Xx: n,Xy: n] :
( ( c_plus @ Xx @ ( cS @ Xy ) )
= ( cS @ ( c_plus @ Xx @ Xy ) ) ) ) ) ).
thf(cPA_IND_EQ_def,definition,
( cPA_IND_EQ
= ( ! [Xp: n > n,Xq: n > n] :
( ( ( ( Xp @ c0 )
= ( Xq @ c0 ) )
& ! [Xx: n] :
( ( ( Xp @ Xx )
= ( Xq @ Xx ) )
=> ( ( Xp @ ( cS @ Xx ) )
= ( Xq @ ( cS @ Xx ) ) ) ) )
=> ! [Xx: n] :
( ( Xp @ Xx )
= ( Xq @ Xx ) ) ) ) ) ).
thf(cPA_THM3,conjecture,
( ( cPA_1
& cPA_2
& cPA_IND_EQ )
=> ! [Xx: n,Xy: n] :
( ( c_plus @ ( cS @ Xx ) @ Xy )
= ( c_plus @ Xy @ ( cS @ Xx ) ) ) ) ).
%------------------------------------------------------------------------------