TPTP Problem File: NUM824^5.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : NUM824^5 : TPTP v9.0.0. Released v4.0.0.
% Domain : Number Theory (Induction on naturals)
% Problem : TPS problem from IND-THMS
% Version : Especial.
% English :
% Refs : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source : [Bro09]
% Names : tps_1001 [Bro09]
% Status : Theorem
% Rating : 0.12 v9.0.0, 0.17 v8.2.0, 0.18 v8.1.0, 0.25 v7.4.0, 0.22 v7.3.0, 0.20 v7.2.0, 0.25 v7.1.0, 0.29 v7.0.0, 0.25 v6.4.0, 0.29 v6.3.0, 0.33 v6.0.0, 0.17 v5.5.0, 0.00 v5.3.0, 0.25 v5.2.0, 0.00 v5.1.0, 0.25 v5.0.0, 0.00 v4.0.0
% Syntax : Number of formulae : 6 ( 0 unt; 5 typ; 0 def)
% Number of atoms : 8 ( 0 equ; 0 cnn)
% Maximal formula atoms : 8 ( 8 avg)
% Number of connectives : 32 ( 0 ~; 1 |; 5 &; 18 @)
% ( 0 <=>; 8 =>; 0 <=; 0 <~>)
% Maximal formula depth : 12 ( 12 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 6 ( 6 >; 0 *; 0 +; 0 <<)
% Number of symbols : 5 ( 5 usr; 1 con; 0-1 aty)
% Number of variables : 8 ( 0 ^; 8 !; 0 ?; 8 :)
% SPC : TH0_THM_NEQ_NAR
% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
% project in the Department of Mathematical Sciences at Carnegie
% Mellon University. Distributed under the Creative Commons copyleft
% license: http://creativecommons.org/licenses/by-sa/3.0/
% :
%------------------------------------------------------------------------------
thf(cN,type,
cN: $i > $o ).
thf(cODD,type,
cODD: $i > $o ).
thf(cEVEN,type,
cEVEN: $i > $o ).
thf(cS,type,
cS: $i > $i ).
thf(c0,type,
c0: $i ).
thf(cTHM623_pme,conjecture,
( ( ! [Xp: $i > $o,Xq: $i > $o] :
( ( ( Xp @ c0 )
& ! [Xu: $i] :
( ( Xp @ Xu )
=> ( Xq @ ( cS @ Xu ) ) )
& ! [Xv: $i] :
( ( Xq @ Xv )
=> ( Xp @ ( cS @ Xv ) ) ) )
=> ( ! [Xx: $i] :
( ( cEVEN @ Xx )
=> ( Xp @ Xx ) )
& ! [Xx: $i] :
( ( cODD @ Xx )
=> ( Xq @ Xx ) ) ) )
& ( cN @ c0 )
& ! [Xn: $i] :
( ( cN @ Xn )
=> ( cN @ ( cS @ Xn ) ) ) )
=> ! [Xm: $i] :
( ( ( cEVEN @ Xm )
| ( cODD @ Xm ) )
=> ( cN @ Xm ) ) ) ).
%------------------------------------------------------------------------------