TPTP Problem File: NUM817^5.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : NUM817^5 : TPTP v9.0.0. Bugfixed v5.2.0.
% Domain : Number Theory (Induction on naturals)
% Problem : TPS problem from IND-THMS
% Version : Especial.
% English :
% Refs : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source : [Bro09]
% Names : tps_0823 [Bro09]
% Status : Theorem
% Rating : 0.25 v9.0.0, 0.30 v8.2.0, 0.54 v8.1.0, 0.45 v7.5.0, 0.29 v7.4.0, 0.44 v7.2.0, 0.38 v7.1.0, 0.50 v7.0.0, 0.57 v6.4.0, 0.67 v6.3.0, 0.60 v6.2.0, 0.71 v6.1.0, 0.57 v5.5.0, 1.00 v5.2.0
% Syntax : Number of formulae : 7 ( 2 unt; 4 typ; 2 def)
% Number of atoms : 9 ( 5 equ; 0 cnn)
% Maximal formula atoms : 4 ( 3 avg)
% Number of connectives : 19 ( 2 ~; 0 |; 2 &; 11 @)
% ( 0 <=>; 4 =>; 0 <=; 0 <~>)
% Maximal formula depth : 6 ( 3 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 4 ( 4 >; 0 *; 0 +; 0 <<)
% Number of symbols : 5 ( 4 usr; 1 con; 0-2 aty)
% Number of variables : 8 ( 2 ^; 5 !; 1 ?; 8 :)
% SPC : TH0_THM_EQU_NAR
% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
% project in the Department of Mathematical Sciences at Carnegie
% Mellon University. Distributed under the Creative Commons copyleft
% license: http://creativecommons.org/licenses/by-sa/3.0/
% :
% Bugfixes : v5.2.0 - Added missing type declarations.
%------------------------------------------------------------------------------
thf(c0_type,type,
c0: $i ).
thf(cS_type,type,
cS: $i > $i ).
thf(cEVEN1_type,type,
cEVEN1: $i > $o ).
thf(cODD1_type,type,
cODD1: $i > $o ).
thf(cEVEN1_def,definition,
( cEVEN1
= ( ^ [Xn: $i] :
! [Xp: $i > $o] :
( ( ( Xp @ c0 )
& ! [Xx: $i] :
( ( Xp @ Xx )
=> ( Xp @ ( cS @ ( cS @ Xx ) ) ) ) )
=> ( Xp @ Xn ) ) ) ) ).
thf(cODD1_def,definition,
( cODD1
= ( ^ [Xn: $i] :
~ ( cEVEN1 @ Xn ) ) ) ).
thf(cTHM405,conjecture,
( ( ! [Xu: $i] :
( ( cS @ Xu )
!= c0 )
& ! [Xv: $i,Xw: $i] :
( ( ( cS @ Xv )
= ( cS @ Xw ) )
=> ( Xv = Xw ) ) )
=> ? [Xn: $i] : ( cODD1 @ Xn ) ) ).
%------------------------------------------------------------------------------