TPTP Problem File: NUM809^5.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : NUM809^5 : TPTP v9.0.0. Bugfixed v5.2.0.
% Domain : Number Theory (Induction on naturals)
% Problem : TPS problem THM130
% Version : Especial.
% English : Induction theorem in which the conclusion is weaker than the
% statement which must be proved by induction.
% Refs : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source : [Bro09]
% Names : tps_0235 [Bro09]
% : THM130 [TPS]
% Status : Theorem
% Rating : 0.38 v9.0.0, 0.40 v8.2.0, 0.62 v8.1.0, 0.55 v7.5.0, 0.29 v7.4.0, 0.56 v7.3.0, 0.67 v7.2.0, 0.62 v7.0.0, 0.57 v6.4.0, 0.50 v6.3.0, 0.60 v6.2.0, 0.57 v5.5.0, 0.67 v5.4.0, 0.40 v5.2.0
% Syntax : Number of formulae : 6 ( 1 unt; 4 typ; 1 def)
% Number of atoms : 7 ( 1 equ; 0 cnn)
% Maximal formula atoms : 5 ( 3 avg)
% Number of connectives : 22 ( 0 ~; 0 |; 3 &; 15 @)
% ( 0 <=>; 4 =>; 0 <=; 0 <~>)
% Maximal formula depth : 10 ( 6 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 4 ( 4 >; 0 *; 0 +; 0 <<)
% Number of symbols : 5 ( 4 usr; 2 con; 0-2 aty)
% Number of variables : 7 ( 0 ^; 6 !; 1 ?; 7 :)
% SPC : TH0_THM_EQU_NAR
% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
% project in the Department of Mathematical Sciences at Carnegie
% Mellon University. Distributed under the Creative Commons copyleft
% license: http://creativecommons.org/licenses/by-sa/3.0/
% :
% Bugfixes : v5.2.0 - Added missing type declarations.
%------------------------------------------------------------------------------
thf(c0_type,type,
c0: $i ).
thf(cS_type,type,
cS: $i > $i ).
thf(r_type,type,
r: $i > $i > $o ).
thf(cIND_type,type,
cIND: $o ).
thf(cIND_def,definition,
( cIND
= ( ! [Xp: $i > $o] :
( ( ( Xp @ c0 )
& ! [Xx: $i] :
( ( Xp @ Xx )
=> ( Xp @ ( cS @ Xx ) ) ) )
=> ! [Xx: $i] : ( Xp @ Xx ) ) ) ) ).
thf(cTHM130,conjecture,
( ( cIND
& ( r @ c0 @ c0 )
& ! [Xx: $i,Xy: $i] :
( ( r @ Xx @ Xy )
=> ( r @ ( cS @ Xx ) @ ( cS @ Xy ) ) ) )
=> ! [Xx: $i] :
? [Xy: $i] : ( r @ Xx @ Xy ) ) ).
%------------------------------------------------------------------------------