TPTP Problem File: NUM781^4.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : NUM781^4 : TPTP v9.0.0. Released v7.1.0.
% Domain : Number theory
% Problem : Grundlagen problem satz79
% Version : [Bro17] axioms : Especial.
% English :
% Refs : [Bro17] Brown (2017), Email to G. Sutcliffe
% Source : [Br017]
% Names :
% Status : Theorem
% Rating : 0.38 v9.0.0, 0.60 v8.2.0, 0.62 v8.1.0, 0.45 v7.5.0, 0.71 v7.4.0, 0.56 v7.2.0, 0.50 v7.1.0
% Syntax : Number of formulae : 674 ( 202 unt; 193 typ; 186 def)
% Number of atoms : 2791 ( 216 equ; 0 cnn)
% Maximal formula atoms : 16 ( 5 avg)
% Number of connectives : 6116 ( 7 ~; 4 |; 14 &;5767 @)
% ( 3 <=>; 321 =>; 0 <=; 0 <~>)
% Maximal formula depth : 15 ( 7 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 564 ( 564 >; 0 *; 0 +; 0 <<)
% Number of symbols : 210 ( 208 usr; 28 con; 0-7 aty)
% Number of variables : 1906 (1747 ^; 151 !; 8 ?;1906 :)
% SPC : TH0_THM_EQU_NAR
% Comments :
%------------------------------------------------------------------------------
include('Axioms/NUM007^0.ax').
include('Axioms/NUM007^1.ax').
%------------------------------------------------------------------------------
thf(typ_inf,type,
inf: $i > $i > $o ).
thf(def_inf,definition,
( inf
= ( esti @ frac ) ) ).
thf(typ_rat,type,
rat: $i ).
thf(def_rat,definition,
( rat
= ( ect @ frac @ n_eq ) ) ).
thf(typ_rt_is,type,
rt_is: $i > $i > $o ).
thf(def_rt_is,definition,
( rt_is
= ( e_is @ rat ) ) ).
thf(typ_rt_nis,type,
rt_nis: $i > $i > $o ).
thf(def_rt_nis,definition,
( rt_nis
= ( ^ [X0: $i,X1: $i] : ( d_not @ ( rt_is @ X0 @ X1 ) ) ) ) ).
thf(typ_rt_some,type,
rt_some: ( $i > $o ) > $o ).
thf(def_rt_some,definition,
( rt_some
= ( l_some @ rat ) ) ).
thf(typ_rt_all,type,
rt_all: ( $i > $o ) > $o ).
thf(def_rt_all,definition,
( rt_all
= ( all @ rat ) ) ).
thf(typ_rt_one,type,
rt_one: ( $i > $o ) > $o ).
thf(def_rt_one,definition,
( rt_one
= ( one @ rat ) ) ).
thf(typ_rt_in,type,
rt_in: $i > $i > $o ).
thf(def_rt_in,definition,
( rt_in
= ( esti @ rat ) ) ).
thf(typ_ratof,type,
ratof: $i > $i ).
thf(def_ratof,definition,
( ratof
= ( ectelt @ frac @ n_eq ) ) ).
thf(typ_class,type,
class: $i > $i ).
thf(def_class,definition,
( class
= ( ecect @ frac @ n_eq ) ) ).
thf(typ_fixf,type,
fixf: $i > $i > $o ).
thf(def_fixf,definition,
( fixf
= ( fixfu2 @ frac @ n_eq ) ) ).
thf(typ_indrat,type,
indrat: $i > $i > $i > $i > $i ).
thf(def_indrat,definition,
( indrat
= ( ^ [X0: $i,X1: $i,X2: $i,X3: $i] : ( indeq2 @ frac @ n_eq @ X2 @ X3 @ X0 @ X1 ) ) ) ).
thf(satz78,axiom,
( all_of
@ ^ [X0: $i] : ( in @ X0 @ rat )
@ ^ [X0: $i] : ( rt_is @ X0 @ X0 ) ) ).
thf(satz79,conjecture,
( all_of
@ ^ [X0: $i] : ( in @ X0 @ rat )
@ ^ [X0: $i] :
( all_of
@ ^ [X1: $i] : ( in @ X1 @ rat )
@ ^ [X1: $i] :
( ( rt_is @ X0 @ X1 )
=> ( rt_is @ X1 @ X0 ) ) ) ) ).
%------------------------------------------------------------------------------