TPTP Problem File: NUM768^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : NUM768^1 : TPTP v9.0.0. Released v3.7.0.
% Domain : Number Theory
% Problem : Landau theorem 67c
% Version : Especial.
% English : eq (pf y (fr (ind (lambda t.ts (num x) (den y) = pl (ts (num y)
% (den x)) t)) (ts (den x) (den y)))) x
% Refs : [Lan30] Landau (1930), Grundlagen der Analysis
% : [vBJ79] van Benthem Jutting (1979), Checking Landau's "Grundla
% : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source : [Bro09]
% Names : satz67c [Lan30]
% Status : Theorem
% : Without extensionality : Theorem
% Rating : 0.38 v9.0.0, 0.60 v8.2.0, 0.62 v8.1.0, 0.64 v7.5.0, 0.57 v7.4.0, 0.56 v7.2.0, 0.50 v7.1.0, 0.62 v7.0.0, 0.57 v6.4.0, 0.67 v6.3.0, 0.60 v6.2.0, 0.71 v6.1.0, 1.00 v6.0.0, 0.71 v5.5.0, 0.67 v5.4.0, 1.00 v3.7.0
% Syntax : Number of formulae : 25 ( 5 unt; 14 typ; 0 def)
% Number of atoms : 19 ( 4 equ; 0 cnn)
% Maximal formula atoms : 3 ( 1 avg)
% Number of connectives : 101 ( 2 ~; 0 |; 0 &; 93 @)
% ( 0 <=>; 6 =>; 0 <=; 0 <~>)
% Maximal formula depth : 11 ( 7 avg)
% Number of types : 3 ( 2 usr)
% Number of type conns : 19 ( 19 >; 0 *; 0 +; 0 <<)
% Number of symbols : 13 ( 12 usr; 2 con; 0-2 aty)
% Number of variables : 23 ( 3 ^; 20 !; 0 ?; 23 :)
% SPC : TH0_THM_EQU_NAR
% Comments :
%------------------------------------------------------------------------------
thf(frac_type,type,
frac: $tType ).
thf(x,type,
x: frac ).
thf(y,type,
y: frac ).
thf(nat_type,type,
nat: $tType ).
thf(some,type,
some: ( nat > $o ) > $o ).
thf(ts,type,
ts: nat > nat > nat ).
thf(num,type,
num: frac > nat ).
thf(den,type,
den: frac > nat ).
thf(pl,type,
pl: nat > nat > nat ).
thf(m,axiom,
( some
@ ^ [Xu: nat] :
( ( ts @ ( num @ x ) @ ( den @ y ) )
= ( pl @ ( ts @ ( num @ y ) @ ( den @ x ) ) @ Xu ) ) ) ).
thf(eq,type,
eq: frac > frac > $o ).
thf(pf,type,
pf: frac > frac > frac ).
thf(fr,type,
fr: nat > nat > frac ).
thf(ind,type,
ind: ( nat > $o ) > nat ).
thf(amone,type,
amone: ( nat > $o ) > $o ).
thf(satz8b,axiom,
! [Xx: nat,Xy: nat] :
( amone
@ ^ [Xz: nat] :
( Xx
= ( pl @ Xy @ Xz ) ) ) ).
thf(satz39,axiom,
! [Xx: frac,Xy: frac,Xz: frac] :
( ( eq @ Xx @ Xy )
=> ( ( eq @ Xy @ Xz )
=> ( eq @ Xx @ Xz ) ) ) ).
thf(satz56,axiom,
! [Xx: frac,Xy: frac,Xz: frac,Xu: frac] :
( ( eq @ Xx @ Xy )
=> ( ( eq @ Xz @ Xu )
=> ( eq @ ( pf @ Xx @ Xz ) @ ( pf @ Xy @ Xu ) ) ) ) ).
thf(satz40,axiom,
! [Xx: frac,Xn: nat] : ( eq @ Xx @ ( fr @ ( ts @ ( num @ Xx ) @ Xn ) @ ( ts @ ( den @ Xx ) @ Xn ) ) ) ).
thf(satz37,axiom,
! [Xx: frac] : ( eq @ Xx @ Xx ) ).
thf(satz29,axiom,
! [Xx: nat,Xy: nat] :
( ( ts @ Xx @ Xy )
= ( ts @ Xy @ Xx ) ) ).
thf(satz57,axiom,
! [Xx1: nat,Xx2: nat,Xn: nat] : ( eq @ ( pf @ ( fr @ Xx1 @ Xn ) @ ( fr @ Xx2 @ Xn ) ) @ ( fr @ ( pl @ Xx1 @ Xx2 ) @ Xn ) ) ).
thf(oneax,axiom,
! [Xp: nat > $o] :
( ~ ( ( amone @ Xp )
=> ~ ( some @ Xp ) )
=> ( Xp @ ( ind @ Xp ) ) ) ).
thf(satz40a,axiom,
! [Xx: frac,Xn: nat] : ( eq @ ( fr @ ( ts @ ( num @ Xx ) @ Xn ) @ ( ts @ ( den @ Xx ) @ Xn ) ) @ Xx ) ).
thf(satz67c,conjecture,
( eq
@ ( pf @ y
@ ( fr
@ ( ind
@ ^ [Xt: nat] :
( ( ts @ ( num @ x ) @ ( den @ y ) )
= ( pl @ ( ts @ ( num @ y ) @ ( den @ x ) ) @ Xt ) ) )
@ ( ts @ ( den @ x ) @ ( den @ y ) ) ) )
@ x ) ).
%------------------------------------------------------------------------------