TPTP Problem File: NUM753^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : NUM753^1 : TPTP v9.0.0. Released v3.7.0.
% Domain : Number Theory
% Problem : Landau theorem 62g
% Version : Especial.
% English : moref (pf x z) (pf y u)
% Refs : [Lan30] Landau (1930), Grundlagen der Analysis
% : [vBJ79] van Benthem Jutting (1979), Checking Landau's "Grundla
% : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source : [Bro09]
% Names : satz62g [Lan30]
% Status : Theorem
% : Without extensionality : Theorem
% Rating : 0.25 v9.0.0, 0.17 v8.2.0, 0.18 v8.1.0, 0.17 v7.4.0, 0.22 v7.3.0, 0.20 v7.2.0, 0.25 v7.1.0, 0.29 v7.0.0, 0.38 v6.4.0, 0.43 v6.3.0, 0.17 v6.2.0, 0.00 v6.1.0, 0.17 v6.0.0, 0.00 v5.5.0, 0.20 v5.4.0, 0.25 v5.3.0, 0.50 v5.2.0, 0.25 v5.1.0, 0.50 v5.0.0, 0.25 v4.1.0, 0.00 v4.0.0, 0.33 v3.7.0
% Syntax : Number of formulae : 15 ( 4 unt; 8 typ; 0 def)
% Number of atoms : 13 ( 0 equ; 0 cnn)
% Maximal formula atoms : 4 ( 1 avg)
% Number of connectives : 44 ( 0 ~; 0 |; 0 &; 38 @)
% ( 0 <=>; 6 =>; 0 <=; 0 <~>)
% Maximal formula depth : 11 ( 6 avg)
% Number of types : 2 ( 1 usr)
% Number of type conns : 6 ( 6 >; 0 *; 0 +; 0 <<)
% Number of symbols : 7 ( 7 usr; 4 con; 0-2 aty)
% Number of variables : 12 ( 0 ^; 12 !; 0 ?; 12 :)
% SPC : TH0_THM_NEQ_NAR
% Comments :
%------------------------------------------------------------------------------
thf(frac_type,type,
frac: $tType ).
thf(x,type,
x: frac ).
thf(y,type,
y: frac ).
thf(z,type,
z: frac ).
thf(u,type,
u: frac ).
thf(eq,type,
eq: frac > frac > $o ).
thf(e,axiom,
eq @ x @ y ).
thf(moref,type,
moref: frac > frac > $o ).
thf(m,axiom,
moref @ z @ u ).
thf(pf,type,
pf: frac > frac > frac ).
thf(satz44,axiom,
! [Xx: frac,Xy: frac,Xz: frac,Xu: frac] :
( ( moref @ Xx @ Xy )
=> ( ( eq @ Xx @ Xz )
=> ( ( eq @ Xy @ Xu )
=> ( moref @ Xz @ Xu ) ) ) ) ).
thf(satz62d,axiom,
! [Xx: frac,Xy: frac,Xz: frac] :
( ( moref @ Xx @ Xy )
=> ( moref @ ( pf @ Xz @ Xx ) @ ( pf @ Xz @ Xy ) ) ) ).
thf(satz37,axiom,
! [Xx: frac] : ( eq @ Xx @ Xx ) ).
thf(satz56,axiom,
! [Xx: frac,Xy: frac,Xz: frac,Xu: frac] :
( ( eq @ Xx @ Xy )
=> ( ( eq @ Xz @ Xu )
=> ( eq @ ( pf @ Xx @ Xz ) @ ( pf @ Xy @ Xu ) ) ) ) ).
thf(satz62g,conjecture,
moref @ ( pf @ x @ z ) @ ( pf @ y @ u ) ).
%------------------------------------------------------------------------------