TPTP Problem File: NUM727^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : NUM727^1 : TPTP v9.0.0. Released v3.7.0.
% Domain : Number Theory
% Problem : Landau theorem 39
% Version : Especial.
% English : ts (num x) (den z) = ts (num z) (den x)
% Refs : [Lan30] Landau (1930), Grundlagen der Analysis
% : [vBJ79] van Benthem Jutting (1979), Checking Landau's "Grundla
% : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source : [Bro09]
% Names : satz39 [Lan30]
% Status : Theorem
% : Without extensionality : Theorem
% Rating : 0.12 v9.0.0, 0.20 v8.2.0, 0.23 v8.1.0, 0.18 v7.5.0, 0.14 v7.4.0, 0.44 v7.3.0, 0.56 v7.2.0, 0.50 v7.1.0, 0.62 v7.0.0, 0.57 v6.4.0, 0.67 v6.3.0, 0.60 v6.2.0, 0.43 v6.1.0, 0.57 v5.5.0, 0.67 v5.4.0, 0.80 v5.2.0, 1.00 v5.0.0, 0.80 v4.1.0, 1.00 v3.7.0
% Syntax : Number of formulae : 14 ( 5 unt; 8 typ; 0 def)
% Number of atoms : 7 ( 7 equ; 0 cnn)
% Maximal formula atoms : 2 ( 1 avg)
% Number of connectives : 41 ( 0 ~; 0 |; 0 &; 40 @)
% ( 0 <=>; 1 =>; 0 <=; 0 <~>)
% Maximal formula depth : 5 ( 3 avg)
% Number of types : 2 ( 2 usr)
% Number of type conns : 4 ( 4 >; 0 *; 0 +; 0 <<)
% Number of symbols : 7 ( 6 usr; 3 con; 0-2 aty)
% Number of variables : 8 ( 0 ^; 8 !; 0 ?; 8 :)
% SPC : TH0_THM_EQU_NAR
% Comments :
%------------------------------------------------------------------------------
thf(frac_type,type,
frac: $tType ).
thf(x,type,
x: frac ).
thf(y,type,
y: frac ).
thf(z,type,
z: frac ).
thf(nat_type,type,
nat: $tType ).
thf(ts,type,
ts: nat > nat > nat ).
thf(num,type,
num: frac > nat ).
thf(den,type,
den: frac > nat ).
thf(e,axiom,
( ( ts @ ( num @ x ) @ ( den @ y ) )
= ( ts @ ( num @ y ) @ ( den @ x ) ) ) ).
thf(f,axiom,
( ( ts @ ( num @ y ) @ ( den @ z ) )
= ( ts @ ( num @ z ) @ ( den @ y ) ) ) ).
thf(satz33b,axiom,
! [Xx: nat,Xy: nat,Xz: nat] :
( ( ( ts @ Xx @ Xz )
= ( ts @ Xy @ Xz ) )
=> ( Xx = Xy ) ) ).
thf(satz29,axiom,
! [Xx: nat,Xy: nat] :
( ( ts @ Xx @ Xy )
= ( ts @ Xy @ Xx ) ) ).
thf(satz31,axiom,
! [Xx: nat,Xy: nat,Xz: nat] :
( ( ts @ ( ts @ Xx @ Xy ) @ Xz )
= ( ts @ Xx @ ( ts @ Xy @ Xz ) ) ) ).
thf(satz39,conjecture,
( ( ts @ ( num @ x ) @ ( den @ z ) )
= ( ts @ ( num @ z ) @ ( den @ x ) ) ) ).
%------------------------------------------------------------------------------