TPTP Problem File: NUM705^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : NUM705^1 : TPTP v9.0.0. Released v3.7.0.
% Domain : Number Theory
% Problem : Landau theorem 27a
% Version : Especial.
% English : ~((forall x:nat.forall y:nat.~((forall x_0:nat.p x_0 ->
% lessis x x_0) -> ~(p x)) -> ~((forall x_0:nat.p x_0 ->
% lessis y x_0) -> ~(p y)) -> x = y) -> ~(some (lambda x.
% ~((forall x_0:nat.p x_0 -> lessis x x_0) -> ~(p x)))))
% Refs : [Lan30] Landau (1930), Grundlagen der Analysis
% : [vBJ79] van Benthem Jutting (1979), Checking Landau's "Grundla
% : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source : [Bro09]
% Names : satz27a [Lan30]
% Status : Theorem
% : Without extensionality : Theorem
% Rating : 0.12 v9.0.0, 0.20 v8.2.0, 0.23 v8.1.0, 0.18 v7.5.0, 0.00 v7.4.0, 0.22 v7.2.0, 0.00 v7.1.0, 0.25 v7.0.0, 0.14 v6.4.0, 0.17 v6.3.0, 0.20 v6.2.0, 0.14 v5.5.0, 0.17 v5.4.0, 0.40 v5.3.0, 0.60 v5.2.0, 0.40 v4.1.0, 0.33 v3.7.0
% Syntax : Number of formulae : 11 ( 0 unt; 5 typ; 0 def)
% Number of atoms : 21 ( 2 equ; 0 cnn)
% Maximal formula atoms : 11 ( 3 avg)
% Number of connectives : 58 ( 14 ~; 0 |; 0 &; 28 @)
% ( 0 <=>; 16 =>; 0 <=; 0 <~>)
% Maximal formula depth : 13 ( 8 avg)
% Number of types : 2 ( 1 usr)
% Number of type conns : 8 ( 8 >; 0 *; 0 +; 0 <<)
% Number of symbols : 5 ( 4 usr; 0 con; 1-2 aty)
% Number of variables : 14 ( 2 ^; 12 !; 0 ?; 14 :)
% SPC : TH0_THM_EQU_NAR
% Comments :
%------------------------------------------------------------------------------
thf(nat_type,type,
nat: $tType ).
thf(p,type,
p: nat > $o ).
thf(some,type,
some: ( nat > $o ) > $o ).
thf(s,axiom,
some @ p ).
thf(lessis,type,
lessis: nat > nat > $o ).
thf(more,type,
more: nat > nat > $o ).
thf(satz14,axiom,
! [Xx: nat,Xy: nat] :
( ( lessis @ Xx @ Xy )
=> ( ~ ( more @ Xy @ Xx )
=> ( Xy = Xx ) ) ) ).
thf(et,axiom,
! [Xa: $o] :
( ~ ~ Xa
=> Xa ) ).
thf(satz10d,axiom,
! [Xx: nat,Xy: nat] :
( ( lessis @ Xx @ Xy )
=> ~ ( more @ Xx @ Xy ) ) ).
thf(satz27,axiom,
! [Xp: nat > $o] :
( ( some @ Xp )
=> ( some
@ ^ [Xx: nat] :
~ ( ! [Xx_0: nat] :
( ( Xp @ Xx_0 )
=> ( lessis @ Xx @ Xx_0 ) )
=> ~ ( Xp @ Xx ) ) ) ) ).
thf(satz27a,conjecture,
~ ( ! [Xx: nat,Xy: nat] :
( ~ ( ! [Xx_0: nat] :
( ( p @ Xx_0 )
=> ( lessis @ Xx @ Xx_0 ) )
=> ~ ( p @ Xx ) )
=> ( ~ ( ! [Xx_0: nat] :
( ( p @ Xx_0 )
=> ( lessis @ Xy @ Xx_0 ) )
=> ~ ( p @ Xy ) )
=> ( Xx = Xy ) ) )
=> ~ ( some
@ ^ [Xx: nat] :
~ ( ! [Xx_0: nat] :
( ( p @ Xx_0 )
=> ( lessis @ Xx @ Xx_0 ) )
=> ~ ( p @ Xx ) ) ) ) ).
%------------------------------------------------------------------------------