TPTP Problem File: NUM665^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : NUM665^1 : TPTP v9.0.0. Released v3.7.0.
% Domain : Number Theory
% Problem : Landau theorem 16c
% Version : Especial.
% English : some (lambda u.diffprop x z u)
% Refs : [Lan30] Landau (1930), Grundlagen der Analysis
% : [vBJ79] van Benthem Jutting (1979), Checking Landau's "Grundla
% : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source : [Bro09]
% Names : satz16c [Lan30]
% Status : Theorem
% : Without extensionality : Theorem
% Rating : 0.25 v9.0.0, 0.17 v8.2.0, 0.18 v8.1.0, 0.25 v7.4.0, 0.22 v7.3.0, 0.20 v7.2.0, 0.00 v6.2.0, 0.17 v6.1.0, 0.00 v5.3.0, 0.25 v5.2.0, 0.00 v5.0.0, 0.25 v4.1.0, 0.33 v4.0.1, 0.00 v4.0.0, 0.33 v3.7.0
% Syntax : Number of formulae : 13 ( 1 unt; 8 typ; 0 def)
% Number of atoms : 12 ( 0 equ; 0 cnn)
% Maximal formula atoms : 5 ( 2 avg)
% Number of connectives : 27 ( 0 ~; 0 |; 0 &; 24 @)
% ( 0 <=>; 3 =>; 0 <=; 0 <~>)
% Maximal formula depth : 11 ( 6 avg)
% Number of types : 2 ( 1 usr)
% Number of type conns : 9 ( 9 >; 0 *; 0 +; 0 <<)
% Number of symbols : 7 ( 7 usr; 3 con; 0-3 aty)
% Number of variables : 9 ( 4 ^; 5 !; 0 ?; 9 :)
% SPC : TH0_THM_NEQ_NAR
% Comments :
%------------------------------------------------------------------------------
thf(nat_type,type,
nat: $tType ).
thf(x,type,
x: nat ).
thf(y,type,
y: nat ).
thf(z,type,
z: nat ).
thf(moreis,type,
moreis: nat > nat > $o ).
thf(m,axiom,
moreis @ x @ y ).
thf(some,type,
some: ( nat > $o ) > $o ).
thf(diffprop,type,
diffprop: nat > nat > nat > $o ).
thf(n,axiom,
( some
@ ^ [Xu: nat] : ( diffprop @ y @ z @ Xu ) ) ).
thf(lessis,type,
lessis: nat > nat > $o ).
thf(satz16b,axiom,
! [Xx: nat,Xy: nat,Xz: nat] :
( ( some
@ ^ [Xv: nat] : ( diffprop @ Xy @ Xx @ Xv ) )
=> ( ( lessis @ Xy @ Xz )
=> ( some
@ ^ [Xv: nat] : ( diffprop @ Xz @ Xx @ Xv ) ) ) ) ).
thf(satz13,axiom,
! [Xx: nat,Xy: nat] :
( ( moreis @ Xx @ Xy )
=> ( lessis @ Xy @ Xx ) ) ).
thf(satz16c,conjecture,
( some
@ ^ [Xu: nat] : ( diffprop @ x @ z @ Xu ) ) ).
%------------------------------------------------------------------------------