TPTP Problem File: NUM651^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : NUM651^1 : TPTP v9.0.0. Released v3.7.0.
% Domain : Number Theory
% Problem : Landau theorem 9b
% Version : Especial.
% English : ~((x = y -> ~(~(forall x_0:nat.~(x = pl y x_0)))) ->
% ~(~((~(forall x_0:nat.~(x = pl y x_0)) ->
% ~(~(forall x_0:nat.~(y = pl x x_0)))) ->
% ~(~(forall x_0:nat.~(y = pl x x_0)) -> ~(x = y)))))
% Refs : [Lan30] Landau (1930), Grundlagen der Analysis
% : [vBJ79] van Benthem Jutting (1979), Checking Landau's "Grundla
% : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source : [Bro09]
% Names : satz9b [Lan30]
% Status : Theorem
% : Without extensionality : Theorem
% Rating : 0.25 v9.0.0, 0.30 v8.2.0, 0.31 v8.1.0, 0.18 v7.5.0, 0.14 v7.4.0, 0.22 v7.2.0, 0.12 v7.1.0, 0.25 v7.0.0, 0.43 v6.4.0, 0.50 v6.3.0, 0.60 v6.2.0, 0.43 v5.5.0, 0.50 v5.4.0, 0.60 v5.1.0, 0.80 v5.0.0, 0.60 v4.1.0, 0.33 v4.0.1, 0.67 v4.0.0, 0.33 v3.7.0
% Syntax : Number of formulae : 9 ( 3 unt; 4 typ; 0 def)
% Number of atoms : 9 ( 9 equ; 0 cnn)
% Maximal formula atoms : 6 ( 1 avg)
% Number of connectives : 46 ( 18 ~; 0 |; 0 &; 22 @)
% ( 0 <=>; 6 =>; 0 <=; 0 <~>)
% Maximal formula depth : 11 ( 5 avg)
% Number of types : 2 ( 1 usr)
% Number of type conns : 2 ( 2 >; 0 *; 0 +; 0 <<)
% Number of symbols : 4 ( 3 usr; 2 con; 0-2 aty)
% Number of variables : 12 ( 0 ^; 12 !; 0 ?; 12 :)
% SPC : TH0_THM_EQU_NAR
% Comments :
%------------------------------------------------------------------------------
thf(nat_type,type,
nat: $tType ).
thf(x,type,
x: nat ).
thf(y,type,
y: nat ).
thf(pl,type,
pl: nat > nat > nat ).
thf(satz7,axiom,
! [Xx: nat,Xy: nat] :
( Xy
!= ( pl @ Xx @ Xy ) ) ).
thf(satz6,axiom,
! [Xx: nat,Xy: nat] :
( ( pl @ Xx @ Xy )
= ( pl @ Xy @ Xx ) ) ).
thf(et,axiom,
! [Xa: $o] :
( ~ ~ Xa
=> Xa ) ).
thf(satz5,axiom,
! [Xx: nat,Xy: nat,Xz: nat] :
( ( pl @ ( pl @ Xx @ Xy ) @ Xz )
= ( pl @ Xx @ ( pl @ Xy @ Xz ) ) ) ).
thf(satz9b,conjecture,
~ ( ( ( x = y )
=> ~ ~ ! [Xx_0: nat] :
( x
!= ( pl @ y @ Xx_0 ) ) )
=> ~ ~ ( ( ~ ! [Xx_0: nat] :
( x
!= ( pl @ y @ Xx_0 ) )
=> ~ ~ ! [Xx_0: nat] :
( y
!= ( pl @ x @ Xx_0 ) ) )
=> ~ ( ~ ! [Xx_0: nat] :
( y
!= ( pl @ x @ Xx_0 ) )
=> ( x != y ) ) ) ) ).
%------------------------------------------------------------------------------