TPTP Problem File: NUM646^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : NUM646^1 : TPTP v9.0.0. Released v3.7.0.
% Domain : Number Theory
% Problem : Landau theorem 8
% Version : Especial.
% English : ~(pl x y = pl x z)
% Refs : [Lan30] Landau (1930), Grundlagen der Analysis
% : [vBJ79] van Benthem Jutting (1979), Checking Landau's "Grundla
% : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source : [Bro09]
% Names : satz8 [Lan30]
% Status : Theorem
% : Without extensionality : Theorem
% Rating : 0.62 v9.0.0, 0.80 v8.2.0, 1.00 v8.1.0, 0.91 v7.5.0, 1.00 v3.7.0
% Syntax : Number of formulae : 18 ( 6 unt; 10 typ; 0 def)
% Number of atoms : 12 ( 6 equ; 0 cnn)
% Maximal formula atoms : 4 ( 1 avg)
% Number of connectives : 42 ( 4 ~; 0 |; 0 &; 32 @)
% ( 0 <=>; 6 =>; 0 <=; 0 <~>)
% Maximal formula depth : 9 ( 4 avg)
% Number of types : 3 ( 2 usr)
% Number of type conns : 9 ( 9 >; 0 *; 0 +; 0 <<)
% Number of symbols : 9 ( 8 usr; 4 con; 0-2 aty)
% Number of variables : 12 ( 0 ^; 12 !; 0 ?; 12 :)
% SPC : TH0_THM_EQU_NAR
% Comments :
%------------------------------------------------------------------------------
thf(nat_type,type,
nat: $tType ).
thf(x,type,
x: nat ).
thf(y,type,
y: nat ).
thf(z,type,
z: nat ).
thf(n,axiom,
y != z ).
thf(pl,type,
pl: nat > nat > nat ).
thf(set_type,type,
set: $tType ).
thf(esti,type,
esti: nat > set > $o ).
thf(setof,type,
setof: ( nat > $o ) > set ).
thf(estie,axiom,
! [Xp: nat > $o,Xs: nat] :
( ( esti @ Xs @ ( setof @ Xp ) )
=> ( Xp @ Xs ) ) ).
thf(n_1,type,
n_1: nat ).
thf(suc,type,
suc: nat > nat ).
thf(ax5,axiom,
! [Xs: set] :
( ( esti @ n_1 @ Xs )
=> ( ! [Xx: nat] :
( ( esti @ Xx @ Xs )
=> ( esti @ ( suc @ Xx ) @ Xs ) )
=> ! [Xx: nat] : ( esti @ Xx @ Xs ) ) ) ).
thf(estii,axiom,
! [Xp: nat > $o,Xs: nat] :
( ( Xp @ Xs )
=> ( esti @ Xs @ ( setof @ Xp ) ) ) ).
thf(satz1,axiom,
! [Xx: nat,Xy: nat] :
( ( Xx != Xy )
=> ( ( suc @ Xx )
!= ( suc @ Xy ) ) ) ).
thf(satz4g,axiom,
! [Xx: nat] :
( ( suc @ Xx )
= ( pl @ n_1 @ Xx ) ) ).
thf(satz4h,axiom,
! [Xx: nat,Xy: nat] :
( ( suc @ ( pl @ Xx @ Xy ) )
= ( pl @ ( suc @ Xx ) @ Xy ) ) ).
thf(satz8,conjecture,
( ( pl @ x @ y )
!= ( pl @ x @ z ) ) ).
%------------------------------------------------------------------------------