TPTP Problem File: NUM641^4.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : NUM641^4 : TPTP v9.0.0. Released v7.1.0.
% Domain : Number theory
% Problem : Grundlagen problem satz4g
% Version : [Bro17] axioms : Especial.
% English :
% Refs : [Bro17] Brown (2017), Email to G. Sutcliffe
% Source : [Br017]
% Names :
% Status : Theorem
% Rating : 0.50 v9.0.0, 0.40 v8.2.0, 0.62 v8.1.0, 0.55 v7.5.0, 0.86 v7.4.0, 0.67 v7.2.0, 0.62 v7.1.0
% Syntax : Number of formulae : 313 ( 126 unt; 121 typ; 114 def)
% Number of atoms : 752 ( 144 equ; 0 cnn)
% Maximal formula atoms : 18 ( 3 avg)
% Number of connectives : 1432 ( 7 ~; 4 |; 14 &;1322 @)
% ( 3 <=>; 82 =>; 0 <=; 0 <~>)
% Maximal formula depth : 14 ( 4 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 420 ( 420 >; 0 *; 0 +; 0 <<)
% Number of symbols : 141 ( 139 usr; 24 con; 0-7 aty)
% Number of variables : 560 ( 403 ^; 149 !; 8 ?; 560 :)
% SPC : TH0_THM_EQU_NAR
% Comments :
%------------------------------------------------------------------------------
include('Axioms/NUM007^0.ax').
%------------------------------------------------------------------------------
thf(satz1,axiom,
( all_of
@ ^ [X0: $i] : ( in @ X0 @ nat )
@ ^ [X0: $i] :
( all_of
@ ^ [X1: $i] : ( in @ X1 @ nat )
@ ^ [X1: $i] :
( ( nis @ X0 @ X1 )
=> ( nis @ ( ordsucc @ X0 ) @ ( ordsucc @ X1 ) ) ) ) ) ).
thf(typ_d_22_prop1,type,
d_22_prop1: $i > $o ).
thf(def_d_22_prop1,definition,
( d_22_prop1
= ( ^ [X0: $i] : ( nis @ ( ordsucc @ X0 ) @ X0 ) ) ) ).
thf(satz2,axiom,
( all_of
@ ^ [X0: $i] : ( in @ X0 @ nat )
@ ^ [X0: $i] : ( nis @ ( ordsucc @ X0 ) @ X0 ) ) ).
thf(typ_d_23_prop1,type,
d_23_prop1: $i > $o ).
thf(def_d_23_prop1,definition,
( d_23_prop1
= ( ^ [X0: $i] :
( l_or @ ( n_is @ X0 @ n_1 )
@ ( n_some
@ ^ [X1: $i] : ( n_is @ X0 @ ( ordsucc @ X1 ) ) ) ) ) ) ).
thf(satz3,axiom,
( all_of
@ ^ [X0: $i] : ( in @ X0 @ nat )
@ ^ [X0: $i] :
( ( nis @ X0 @ n_1 )
=> ( n_some
@ ^ [X1: $i] : ( n_is @ X0 @ ( ordsucc @ X1 ) ) ) ) ) ).
thf(satz3a,axiom,
( all_of
@ ^ [X0: $i] : ( in @ X0 @ nat )
@ ^ [X0: $i] :
( ( nis @ X0 @ n_1 )
=> ( n_one
@ ^ [X1: $i] : ( n_is @ X0 @ ( ordsucc @ X1 ) ) ) ) ) ).
thf(typ_d_24_prop1,type,
d_24_prop1: $i > $o ).
thf(def_d_24_prop1,definition,
( d_24_prop1
= ( ^ [X0: $i] :
( n_all
@ ^ [X1: $i] : ( n_is @ ( ap @ X0 @ ( ordsucc @ X1 ) ) @ ( ordsucc @ ( ap @ X0 @ X1 ) ) ) ) ) ) ).
thf(typ_d_24_prop2,type,
d_24_prop2: $i > $i > $o ).
thf(def_d_24_prop2,definition,
( d_24_prop2
= ( ^ [X0: $i,X1: $i] : ( d_and @ ( n_is @ ( ap @ X1 @ n_1 ) @ ( ordsucc @ X0 ) ) @ ( d_24_prop1 @ X1 ) ) ) ) ).
thf(typ_prop3,type,
prop3: $i > $i > $i > $o ).
thf(def_prop3,definition,
( prop3
= ( ^ [X0: $i,X1: $i,X2: $i] : ( n_is @ ( ap @ X0 @ X2 ) @ ( ap @ X1 @ X2 ) ) ) ) ).
thf(typ_prop4,type,
prop4: $i > $o ).
thf(def_prop4,definition,
( prop4
= ( ^ [X0: $i] :
( l_some
@ ( d_Pi @ nat
@ ^ [X1: $i] : nat )
@ ( d_24_prop2 @ X0 ) ) ) ) ).
thf(typ_d_24_g,type,
d_24_g: $i > $i ).
thf(def_d_24_g,definition,
( d_24_g
= ( ^ [X0: $i] :
( d_Sigma @ nat
@ ^ [X1: $i] : ( ordsucc @ ( ap @ X0 @ X1 ) ) ) ) ) ).
thf(satz4,axiom,
( all_of
@ ^ [X0: $i] : ( in @ X0 @ nat )
@ ^ [X0: $i] :
( one
@ ( d_Pi @ nat
@ ^ [X1: $i] : nat )
@ ^ [X1: $i] :
( d_and @ ( n_is @ ( ap @ X1 @ n_1 ) @ ( ordsucc @ X0 ) )
@ ( n_all
@ ^ [X2: $i] : ( n_is @ ( ap @ X1 @ ( ordsucc @ X2 ) ) @ ( ordsucc @ ( ap @ X1 @ X2 ) ) ) ) ) ) ) ).
thf(typ_plus,type,
plus: $i > $i ).
thf(def_plus,definition,
( plus
= ( ^ [X0: $i] :
( ind
@ ( d_Pi @ nat
@ ^ [X1: $i] : nat )
@ ( d_24_prop2 @ X0 ) ) ) ) ).
thf(typ_n_pl,type,
n_pl: $i > $i > $i ).
thf(def_n_pl,definition,
( n_pl
= ( ^ [X0: $i] : ( ap @ ( plus @ X0 ) ) ) ) ).
thf(satz4a,axiom,
( all_of
@ ^ [X0: $i] : ( in @ X0 @ nat )
@ ^ [X0: $i] : ( n_is @ ( n_pl @ X0 @ n_1 ) @ ( ordsucc @ X0 ) ) ) ).
thf(satz4b,axiom,
( all_of
@ ^ [X0: $i] : ( in @ X0 @ nat )
@ ^ [X0: $i] :
( all_of
@ ^ [X1: $i] : ( in @ X1 @ nat )
@ ^ [X1: $i] : ( n_is @ ( n_pl @ X0 @ ( ordsucc @ X1 ) ) @ ( ordsucc @ ( n_pl @ X0 @ X1 ) ) ) ) ) ).
thf(satz4c,axiom,
( all_of
@ ^ [X0: $i] : ( in @ X0 @ nat )
@ ^ [X0: $i] : ( n_is @ ( n_pl @ n_1 @ X0 ) @ ( ordsucc @ X0 ) ) ) ).
thf(satz4d,axiom,
( all_of
@ ^ [X0: $i] : ( in @ X0 @ nat )
@ ^ [X0: $i] :
( all_of
@ ^ [X1: $i] : ( in @ X1 @ nat )
@ ^ [X1: $i] : ( n_is @ ( n_pl @ ( ordsucc @ X0 ) @ X1 ) @ ( ordsucc @ ( n_pl @ X0 @ X1 ) ) ) ) ) ).
thf(satz4e,axiom,
( all_of
@ ^ [X0: $i] : ( in @ X0 @ nat )
@ ^ [X0: $i] : ( n_is @ ( ordsucc @ X0 ) @ ( n_pl @ X0 @ n_1 ) ) ) ).
thf(satz4f,axiom,
( all_of
@ ^ [X0: $i] : ( in @ X0 @ nat )
@ ^ [X0: $i] :
( all_of
@ ^ [X1: $i] : ( in @ X1 @ nat )
@ ^ [X1: $i] : ( n_is @ ( ordsucc @ ( n_pl @ X0 @ X1 ) ) @ ( n_pl @ X0 @ ( ordsucc @ X1 ) ) ) ) ) ).
thf(satz4g,conjecture,
( all_of
@ ^ [X0: $i] : ( in @ X0 @ nat )
@ ^ [X0: $i] : ( n_is @ ( ordsucc @ X0 ) @ ( n_pl @ n_1 @ X0 ) ) ) ).
%------------------------------------------------------------------------------