TPTP Problem File: NUM637^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : NUM637^1 : TPTP v9.0.0. Released v3.7.0.
% Domain : Number Theory
% Problem : Landau theorem 3
% Version : Especial.
% English : ~(forall x_0:nat.~(x = suc x_0))
% Refs : [Lan30] Landau (1930), Grundlagen der Analysis
% : [vBJ79] van Benthem Jutting (1979), Checking Landau's "Grundla
% : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source : [Bro09]
% Names : satz3 [Lan30]
% Status : Theorem
% : Without extensionality : Theorem
% Rating : 0.62 v9.0.0, 0.70 v8.2.0, 0.77 v8.1.0, 0.64 v7.5.0, 0.57 v7.4.0, 0.56 v7.2.0, 0.50 v7.1.0, 0.62 v7.0.0, 0.57 v6.4.0, 0.67 v6.3.0, 0.60 v6.2.0, 0.57 v5.5.0, 0.67 v5.4.0, 0.80 v4.1.0, 0.67 v4.0.1, 1.00 v4.0.0, 0.67 v3.7.0
% Syntax : Number of formulae : 13 ( 4 unt; 7 typ; 0 def)
% Number of atoms : 8 ( 2 equ; 0 cnn)
% Maximal formula atoms : 4 ( 1 avg)
% Number of connectives : 29 ( 5 ~; 0 |; 0 &; 18 @)
% ( 0 <=>; 6 =>; 0 <=; 0 <~>)
% Maximal formula depth : 9 ( 5 avg)
% Number of types : 3 ( 2 usr)
% Number of type conns : 7 ( 7 >; 0 *; 0 +; 0 <<)
% Number of symbols : 6 ( 5 usr; 2 con; 0-2 aty)
% Number of variables : 9 ( 0 ^; 9 !; 0 ?; 9 :)
% SPC : TH0_THM_EQU_NAR
% Comments :
%------------------------------------------------------------------------------
thf(nat_type,type,
nat: $tType ).
thf(x,type,
x: nat ).
thf(n_1,type,
n_1: nat ).
thf(n,axiom,
x != n_1 ).
thf(suc,type,
suc: nat > nat ).
thf(set_type,type,
set: $tType ).
thf(esti,type,
esti: nat > set > $o ).
thf(setof,type,
setof: ( nat > $o ) > set ).
thf(estie,axiom,
! [Xp: nat > $o,Xs: nat] :
( ( esti @ Xs @ ( setof @ Xp ) )
=> ( Xp @ Xs ) ) ).
thf(ax5,axiom,
! [Xs: set] :
( ( esti @ n_1 @ Xs )
=> ( ! [Xx: nat] :
( ( esti @ Xx @ Xs )
=> ( esti @ ( suc @ Xx ) @ Xs ) )
=> ! [Xx: nat] : ( esti @ Xx @ Xs ) ) ) ).
thf(estii,axiom,
! [Xp: nat > $o,Xs: nat] :
( ( Xp @ Xs )
=> ( esti @ Xs @ ( setof @ Xp ) ) ) ).
thf(et,axiom,
! [Xa: $o] :
( ~ ~ Xa
=> Xa ) ).
thf(satz3,conjecture,
~ ! [Xx_0: nat] :
( x
!= ( suc @ Xx_0 ) ) ).
%------------------------------------------------------------------------------