TPTP Problem File: NUM636^4.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : NUM636^4 : TPTP v9.0.0. Released v7.1.0.
% Domain : Number theory
% Problem : Grundlagen problem satz2
% Version : [Bro17] axioms : Especial.
% English :
% Refs : [Bro17] Brown (2017), Email to G. Sutcliffe
% Source : [Br017]
% Names :
% Status : Theorem
% Rating : 0.75 v9.0.0, 0.90 v8.2.0, 0.85 v8.1.0, 0.82 v7.5.0, 1.00 v7.4.0, 0.78 v7.2.0, 0.75 v7.1.0
% Syntax : Number of formulae : 287 ( 120 unt; 113 typ; 106 def)
% Number of atoms : 552 ( 136 equ; 0 cnn)
% Maximal formula atoms : 10 ( 3 avg)
% Number of connectives : 1254 ( 7 ~; 4 |; 14 &;1146 @)
% ( 3 <=>; 80 =>; 0 <=; 0 <~>)
% Maximal formula depth : 14 ( 4 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 408 ( 408 >; 0 *; 0 +; 0 <<)
% Number of symbols : 120 ( 118 usr; 11 con; 0-7 aty)
% Number of variables : 513 ( 356 ^; 149 !; 8 ?; 513 :)
% SPC : TH0_THM_EQU_NAR
% Comments :
%------------------------------------------------------------------------------
include('Axioms/NUM007^0.ax').
%------------------------------------------------------------------------------
thf(satz1,axiom,
( all_of
@ ^ [X0: $i] : ( in @ X0 @ nat )
@ ^ [X0: $i] :
( all_of
@ ^ [X1: $i] : ( in @ X1 @ nat )
@ ^ [X1: $i] :
( ( nis @ X0 @ X1 )
=> ( nis @ ( ordsucc @ X0 ) @ ( ordsucc @ X1 ) ) ) ) ) ).
thf(typ_d_22_prop1,type,
d_22_prop1: $i > $o ).
thf(def_d_22_prop1,definition,
( d_22_prop1
= ( ^ [X0: $i] : ( nis @ ( ordsucc @ X0 ) @ X0 ) ) ) ).
thf(satz2,conjecture,
( all_of
@ ^ [X0: $i] : ( in @ X0 @ nat )
@ ^ [X0: $i] : ( nis @ ( ordsucc @ X0 ) @ X0 ) ) ).
%------------------------------------------------------------------------------