TPTP Problem File: NUM374+2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : NUM374+2 : TPTP v9.0.0. Released v3.2.0.
% Domain : Number Theory
% Problem : Disprove Wilkie identity from Tarski's identities
% Version : [Zha05] axioms : Augmented > Redundant.
% English :
% Refs : [Zha05] Zhang (2005), Computer Search for Counterexamples to W
% Source : [Zha05]
% Names :
% Status : CounterSatisfiable
% Rating : 1.00 v6.2.0, 0.91 v6.1.0, 1.00 v3.2.0
% Syntax : Number of formulae : 16 ( 14 unt; 0 def)
% Number of atoms : 48 ( 46 equ)
% Maximal formula atoms : 27 ( 3 avg)
% Number of connectives : 60 ( 28 ~; 0 |; 30 &)
% ( 1 <=>; 1 =>; 0 <=; 0 <~>)
% Maximal formula depth : 34 ( 6 avg)
% Maximal term depth : 5 ( 1 avg)
% Number of predicates : 2 ( 1 usr; 0 prp; 2-6 aty)
% Number of functors : 6 ( 6 usr; 3 con; 0-2 aty)
% Number of variables : 43 ( 43 !; 0 ?)
% SPC : FOF_CSA_RFO_SEQ
% Comments : Lemmas added.
%------------------------------------------------------------------------------
fof(sum_symmetry,axiom,
! [X,Y] : sum(X,Y) = sum(Y,X) ).
fof(sum_associativity,axiom,
! [X,Y,Z] : sum(X,sum(Y,Z)) = sum(sum(X,Y),Z) ).
fof(product_identity,axiom,
! [X] : product(X,n1) = X ).
fof(product_symmetry,axiom,
! [X,Y] : product(X,Y) = product(Y,X) ).
fof(product_associativity,axiom,
! [X,Y,Z] : product(X,product(Y,Z)) = product(product(X,Y),Z) ).
fof(sum_product_distribution,axiom,
! [X,Y,Z] : product(X,sum(Y,Z)) = sum(product(X,Y),product(X,Z)) ).
fof(exponent_n1,axiom,
! [X] : exponent(n1,X) = n1 ).
fof(exponent_identity,axiom,
! [X] : exponent(X,n1) = X ).
fof(exponent_sum_product,axiom,
! [X,Y,Z] : exponent(X,sum(Y,Z)) = product(exponent(X,Y),exponent(X,Z)) ).
fof(exponent_product_distribution,axiom,
! [X,Y,Z] : exponent(product(X,Y),Z) = product(exponent(X,Z),exponent(Y,Z)) ).
fof(exponent_exponent,axiom,
! [X,Y,Z] : exponent(exponent(X,Y),Z) = exponent(X,product(Y,Z)) ).
fof(lemmas,axiom,
! [C,P,Q,R,S,B] :
( lemmas(C,P,Q,R,S,B)
<=> ( n2 = sum(n1,n1)
& B != n0
& B != n1
& B != n2
& ! [X] : B != product(n0,X)
& ! [X] : P != product(Q,X)
& ! [X] : Q != product(P,X)
& ! [X] : R != product(S,X)
& ! [X] : S != product(R,X)
& sum(n1,n0) != n1
& sum(n2,n0) != n1
& sum(n0,n0) != n1
& C != n1
& sum(n1,C) != n1
& product(C,n0) != n1
& sum(n1,n0) != n0
& sum(n2,n0) != n0
& sum(n0,n0) != n0
& C != n0
& sum(n1,C) != n0
& sum(n2,n0) != sum(n1,n0)
& C != sum(n1,n0)
& product(C,n0) != sum(n1,n0)
& C != sum(n2,n0)
& C != sum(n0,n0)
& sum(n1,C) != C ) ) ).
fof(n0_n1,axiom,
n0 != n1 ).
fof(n0_n2,axiom,
n0 != n2 ).
fof(n1_n2,axiom,
n1 != n2 ).
fof(wilkie,conjecture,
! [C,P,Q,R,S,A,B] :
( ( C = product(A,A)
& P = sum(n1,A)
& Q = sum(P,C)
& R = sum(n1,product(A,C))
& S = sum(sum(n1,C),product(C,C))
& lemmas(C,P,Q,R,S,B) )
=> product(exponent(sum(exponent(P,A),exponent(Q,A)),B),exponent(sum(exponent(R,B),exponent(S,B)),A)) = product(exponent(sum(exponent(P,B),exponent(Q,B)),A),exponent(sum(exponent(R,A),exponent(S,A)),B)) ) ).
%------------------------------------------------------------------------------